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Preface 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

This thesis is the final result of my graduation project. It marks the end of 

my studies in Civil Engineering at the Delft University of Technology. In 

my master’s, I have taken two different specialization tracks: Transport & 

Planning and Hydraulic Engineering. One of the elements in the 

Hydraulic Engineering track which aroused my special interest is the 

probabilistic design philosophy. Because of this, I decided to devote my 

graduation project to an application of the probabilistic way of looking at 

systems to the (motorway) traffic system, focusing on the daily traffic 

congestion in this system (one of my fields of interest in the Transport & 

Planning discipline). 

 

I am grateful to have had the opportunity to perform my research at the 

ITS Edulab, a cooperation between the Rijkswaterstaat Centre for 

Transport and Navigation and the Delft University of Technology. The 

Centre of Transport and Navigation offered a very nice workplace, and 

good facilities for performing the research. Without access to its digital 

library, an important part of my literature search would not have been 

possible. At the department of Road Traffic Management I always felt 

very welcome, for which I would like to thank all my colleagues over 

there. I would also like to thank my fellow students in the ITS Edulab, for 

the enjoyable time and good working atmosphere. 

 

Many thanks go to the members of my graduation committee, for 

reviewing my report and providing valuable advices. Finally, I would also 

like to express my gratitude to Frank Zuurbier and Chris van Hinsbergen, 

for providing the opportunity to use their dynamic traffic simulator 

‘JDSMART’ in my model. 
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Summary 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In the past decades, traffic congestion on the Dutch motorway network 

has developed into a serious problem, causing large costs to society. In 

this thesis (alleviating) traffic congestion is considered from a probabilistic 

perspective, meaning that the variability in traffic is explicitly taken into 

account. Traditionally, in evaluations of the effectiveness of proposed 

congestion relief measures this variability is taken into account only in a 

limited or simplified way, or even not at all. Often simply a kind of 

‘representative’ situation is calculated, possibly supplemented with some 

qualitative considerations or scenario-based analyses regarding the 

effects on the robustness of the traffic system.  

  

The main objective of this research project was to reveal what kind of 

new insights can be obtained if we actually do explicitly/systematically 

take into account the inherent variable nature of daily motorway 

congestion. Two different types of such additional (or revised) insights 

are distinguished: 

- Insights into the relative importance of the various primary 

sources of traffic congestion. 

- Insights into the effectiveness of specific traffic measures 

proposed to alleviate congestion. 

 

Basically, the mechanism behind traffic congestion can be described as a 

process of interaction between the traffic demand and supply on the 

road sections of the network. Both this traffic demand and supply show a 

significant level of temporal variability, which makes the resulting traffic 

conditions variable as well. There is a large variety of sources of 

variability in demand and supply. These include: 

- systematic travel behavioral variations as a function of time 

(i.e. time of the day, day of the week and month of the year) 

- vacation periods 

- special days (like public holidays)  

- weather variations 

- luminance variations 

- road works 

- incidents 

- events 

- traffic control 

- variations in vehicle population 

- variations in driver population 

- intrinsic randomness in people’s personal travel choices 

- intrinsic randomness in human driving behavior 

(i.e. variations both between and ‘within’ drivers, which cannot 

be explained by external influences) 
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While for given demand and supply values for a road section the 

mechanism behind congestion can be described as a (simple) local 

demand-supply process, reality is more complicated. This is due to the 

fact that these demand and supply values actually depend on the traffic 

conditions on other sections of the road network. These spatiotemporal 

dependencies between the traffic conditions on the different sections of 

a network are due to a number of ‘network effects’ of traffic congestion. 

These mechanisms can only be accounted for by considering the traffic 

flow dynamics at the network level. 

 

If the variability in traffic is to be explicitly taken into account in 

evaluations of the performance of the traffic system, it must first be 

decided which criterion is to be used then for this performance. There is 

no sharp ‘failure boundary’ with respect to the amount of traffic 

congestion (a threshold above which the motorway system can be 

considered to ‘fail’, and below which the system can be considered to 

‘function’). In the end, it is all about the costs that traffic congestion 

causes to society. Traffic congestion causes costs to society in various 

ways. Considering these different types of costs, it turns out that they 

cannot be expressed in one single indicator, since they are related to the 

traffic conditions in different ways. Because of this, rather a set of 

indicators needs to be considered. 

 

One of the costs of traffic congestion is related to the travel time 

uncertainty that this congestion creates. It is difficult to find a proper 

indicator for this. It is clear that the uncertainty costs are reflected in the 

travel time distribution, but not exactly in what way. The indicators 

found in practice and international literature all have their limitations, 

because each of them represents only part of the information contained 

in the travel time distribution. This problem is dealt with by including 

multiple statistics of the travel time distribution in the set of selected 

indicators. Furthermore, an indicator representing the travel time 

instability was added, in view of the fact that this factor plays an 

important role in the resulting travel time uncertainty as well. This 

indicator expresses to which extent the traffic conditions experienced by 

travelers might deviate from the instantaneous traffic conditions at the 

moment of departure (as disseminated by traffic information). 

 

It was considered that the (potential) gain of new insights could best be 

shown using a model-based approach. The most obvious choice is then 

to use a model with a macroscopic traffic simulator as computational 

core. In practice and in literature, several models specifically designed for 

addressing the variability in traffic conditions can be found. It was 

concluded however that none of the considered models was completely 

adequate for the tasks at hand. Therefore, in this project a new model 

was developed. The main principle of this model is that a large number 

of traffic simulations are performed for varying model inputs, reflecting 

the variabilities in the traffic demand and supply characteristics. 

Subsequently, the desired performance indicators can be computed from 

the combined set of all simulation results. 

 

In the model both the demand and supply values are varied per 5-minute 

interval of the day. Here the demands are varied at the level of origin-
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destination relations, and the supply characteristics at the level of 

network cells. The stochastic generation of the demand and supply 

values proceeds in two steps: 

- First, random realizations of the different influencing factors (also 

indicated as ‘sources of variability’) are generated. For this the 

Monte Carlo method is used. (A scenario-based approach is 

considered inappropriate.) In the Monte Carlo simulation use is 

made of data on the probabilities/frequencies of occurrence of 

the different possible conditions. Important interdependencies 

between the different sources of variability are taken into 

account by using conditional probability specifications.  

- Subsequently, the stochastically generated circumstances are 

translated into effects on the traffic demand and/or supply 

characteristics, using tables in which these effects are specified in 

terms of correction factors. By applying these correction factors 

on the representative values of the demand and supply 

characteristics, the stochastic realizations of these demand and 

supply characteristics are found. 

 

The stochastically generated demand and supply conditions are passed 

on to the computational core of the model, which then simulates the 

traffic conditions that would arise from these conditions. This 

computational core consists of the existing dynamic macroscopic traffic 

simulator JDSMART (a first order cell transmission model), which was 

supplemented with some additional functionality to make it suitable for 

its role in the developed model. 

 

Special care has been taken to make sure that the same pseudo-random 

numbers are used in different model runs, in order to improve the 

comparability of the outputs of these runs. This means that the different 

parts of the model have been programmed in such a way that they 

always generate the same number of pseudo-random numbers, 

irrespective of certain model settings. 

 

In order to explore the (potential) new insights obtained by explicitly 

considering the variability, the developed model has been applied to a 

reasonably sized real-life motorway network. It should be noted, 

however, that incidents and road works were omitted from the analyses, 

because of the inability of the model to deal with these in a sufficiently 

valid way. 

 

From the results obtained with the model, it is clear that the 

‘representative’ calculation does not give a good impression of the 

performance of the traffic system. This is not only due to the obvious 

fact that the (day-to-day) uncertainty aspect of this performance is 

disregarded (due to the neglect of the day-to-day variability in the 

traffic conditions). Also, the representative calculation turns out to 

underestimate the traffic congestion in certain respects. That is, the 

traffic congestion calculated for the ‘representative’ situation (i.e. the 

situation in which all demand and supply characteristics are at their 

‘representative’ level, which for example could be the mean or median 

value) is not so ‘representative’ itself. This is related to the 
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predominantly negative influence of the (neglected) variability. This 

predominantly negative influence arises from: 

- the purely negative nature of some of the sources of variability 

(such as incidents or bad weather events) 

- the non-linearity in the traffic system (i.e. the fact that the 

congestion level is a non-linear function of the difference 

between demand and supply, causing that the detriments of 

‘negative occurrences’ are often larger than the benefits of 

‘positive occurrences’). 
 

It has been demonstrated that new insights into the relative importance 

of the different primary congestion sources can be obtained by 

‘deactivating’ them in the model. Although the relative influences of 

only a limited number of such sources have been compared in this 

project (by way of illustration), and only one specific test network was 

considered, it can be concluded that the capacity variations due to the 

intrinsic randomness in human driving behavior play a central role in 

peak period-related traffic congestion. The demand variation over the 

months of the year plays an important role as well, while the ambient 

conditions (i.e. weather and daylight/darkness), events and the intrinsic 

randomness in travel behavior seem to have a much smaller (or even 

negligible) influence. Ignoring the influences of incidents and road 

works, events seem to be the most important source of weekend day 

traffic congestion. 

 

This kind of information may be valuable in the following ways: 

- It might yield important insights into how traffic congestion can be 
remedied most effectively. 

- Insofar as certain sources of variability are found to be negligible 
compared to others (as a general rule), these can be omitted in 
future model evaluations (both in research studies and in practical 
applications).  

 
By considering the example of a rush-hour lane, the research has shown 
that new insights can be obtained into the effectiveness of specific 
measures that are proposed to alleviate traffic congestion. It turned out 

that the ‘traditional’ way of evaluating the effectiveness of a measure 
may actually result in a significant underestimation of the benefits of this 
measure. This is due to the facts that: 

- A ‘representative’ calculation underestimates the traffic congestion 
in certain respects (as noted above), and thereby underestimates 
the beneficial effects of proposed measures (aimed at alleviating 

this congestion) as well. 

- In an evaluation according to the traditional approach potential 

benefits of a considered measure may remain unnoticed due to 

nonlinearities and trend breaks in the behavior of the traffic 

system. This applies particularly to (the prevention of) spillback of 

congestion to other network elements. If this spillback occurs 

only in part of the occasions (say less than 50%), it will not be 

included in the representative analyses. Consequently, the 

benefits achieved on these other network elements will not be 

reflected in the evaluation results. 
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- In an evaluation according to the traditional approach, no 

information is obtained on the improvements in travel time 

uncertainty (due to the fact that the day-to-day variability in the 

traffic conditions is not considered). 

The precise nature and extent of the additional/revised insights into the 

effectiveness of a measure will be highly context and measure specific. Of 

course, these new insights are not necessarily all positive in nature. Some 

more negative aspects of a measure could be brought to light as well. 

 

The above implies that in practice more systematic attention should be 

given to the variability in traffic, when evaluating the effectiveness of 

measures that are proposed to alleviate congestion. Because of the 

complexity involved (especially in case of heavily loaded networks in 

highly urbanized areas), this would have to be done by using a model 

in which the different sources of variability are explicitly accounted for, 

such as the model developed in this project.  

 

This model was developed solely for the research task considered in this 

thesis, however, and thus not directly for practical application in the 

evaluation of concrete projects. In such practical evaluations, the model 

can only be used in a qualitative way, to find out whether certain 

effects (i.e. benefits or detriments) of a measure may be overlooked (or 

considerably underestimated) in the evaluation according to the 

traditional approach. The model cannot be used to find the detailed 

quantitative values of these effects, due to the facts that: 

- Its quantitative outputs are affected by a number of deficiencies, 
related to some modeling issues that require substantial further 
research. 

- It cannot be properly calibrated to the local situation. 

 

Another issue relevant to the practical applicability of the model is its 

computation time. Currently, the computation time required for one 

model run is in the order of days or weeks, which is related to the large 

number of simulations that is to be performed. For practical 

applications, this computation time would have to be reduced. Such a 

reduction could be achieved in three different ways: 

- Using faster computers (or multiple computers in parallel). 

- Reducing the required number of simulation runs, by 

implementing a more efficient sampling technique (such as 

Latin Hypercube Sampling or Importance Sampling). 

- Increasing the speed of the developed model (i.e. reducing the 

amount of computation time required per individual simulation 

run), involving a tradeoff between computation time and model 

accuracy. 
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1. Introduction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1 The traffic congestion problem and its relation with 

probabilistic design 

In the past decades, traffic congestion on the Dutch main road network 

has developed into a serious problem. In 2009, a total amount of 62 

million hours 4  was lost due to sub optimal traffic operations (DVS, 

2010). This corresponds to 8.6% of the total travel time spent on the 

main road network (723 million hours). In the Randstad, during the 

morning peak a trip of 30 kilometers on the highway network takes 

about 30 minutes on average, while the free flow travel time 5 is only 

about 18 minutes (AVV, 2004). 

  

The main cause of this problematic situation seems obvious. During the 

past decades, the growth in the amount of traffic using the main road 

network substantially exceeded the rate of extension of the network 

capacity. As a result, the relative network loading got more and more 

heavy. The result is a situation in which during every peak period many 

traffic jams are formed. 

 

These traffic jams do not only occur at structural bottlenecks in the 

network, and not only during the peak periods either. Also at other 

locations and in other periods of the day traffic jams are formed from 

time to time. Part of these traffic jams is (partly) caused by incidents, 

road works, events and bad weather conditions. As a result of its 

heavier loading, the network has become more vulnerable to this kind 

of circumstances. 

 

The effects of a local overloading of the available infrastructure 

capacity do not limit themselves to the location concerned. After all, 

the resulting traffic jam has a certain dimension. Furthermore, this 

traffic jam can propagate itself over the network. This phenomenon 

occurs when the head of the queue is dissolving, while the tail of it is 

still propagating upstream. These characteristics result in traffic jams 

blocking other traffic streams (consisting of vehicles that do not need to 

pass the bottleneck location itself). As a consequence, disruptions can 

rapidly spread out over a substantial part of the network. The high 

network loading results in the network being more vulnerable to this 

phenomenon. 

 

Beside the fact that much time is lost due to delays, an important 

characteristic of the resulting traffic operations is that travel times are ill 

                                                   
4 Expressed in lost vehicle hours: the sum of the delay of all vehicles, relative to a norm speed 

of 100 km/h. 

5 Defined here as the travel time in case of a travel speed of 100 km/h. 
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predictable. Travel times do not only vary as a function of the time of 

the day, but show a considerable day-to-day variation as well. This can 

be illustrated with Figure 1.1, showing the travel time on a route from 

Amersfoort to Amsterdam, as a function of the time of the day. 

Comparison of the values of the various percentiles of the travel time 

provides an indication of the day-to-day variation in the travel time. On 

this route, the morning peak shows longer travel times than the 

evening peak. At the busiest moment during the morning peak, the 

travel time is on average more than twice as long as during free flow 

conditions (48 versus 22 minutes). However, on 15% of the weekdays, 

the travel time during the morning peak is hardly longer than the free 

flow travel time, while on another 15% of the weekdays a travel time 

of more than 3 times the free flow travel time is reached. 

 

 
 

The traffic congestion on the main road network causes large costs to 

society. For 2008, the total costs were estimated at 2.8 to 3.6 billion 

euros (KiM, 2009). This corresponds to roughly 0.5% of the Dutch 

gross national product. In the period 2000–2008, these costs increased 

by approximately 78%. Because of these large costs, the Dutch 

government tries to reduce the amount of traffic congestion. 

  

In this graduation project, alleviation of traffic congestion will be 

considered from a probabilistic design perspective 6 . The essence of 

probabilistic design is that variability/uncertainty is explicitly taken into 

account in the design. In deterministic design, this is not the case. In this 

‘traditional’ way of designing, the design is based on a certain 

‘representative’ situation. By neglecting the variabilities/uncertainties, it 

may well be that the designed product or system finally does not perform 

as desired, for example in terms of failing (too soon / too often) to 

perform its intended function. Often, certain (not well-founded) safety 

factor(s) are applied in the design in order to prevent this. However, one 

still does not know then how good the product or system actually will be. 

This is likely to result in an (economically) sub-optimal situation. 

                                                   
6 Here ‘design’ should not be taken too literally. This thesis does not deal with the actual 

design of traffic systems. It is rather the probabilistic way of looking at a system which is 

applied here to the traffic system, in the context of analyzing (ways to alleviate) traffic 

congestion. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 1.1: Travel times Amersfoort-
Amsterdam, weekdays 2002 
(Source: AVV, 2004b) 
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Therefore, it is better to follow the probabilistic design philosophy, and 

consider all variabilities/uncertainties explicitly. This way, one is able to 

optimize the design of the product or system, or at least able to make 

sure that it will satisfy certain norms. Furthermore, designing the 

product or system in a probabilistic manner may provide the designer 

with additional insights into the relative importance of different 

mechanisms. In combination with information regarding the costs of 

certain measures, these insights may be used for the identification of 

the most cost-effective measures to improve the design. Of course, the 

results of the detailed probabilistic analyses finally may be translated 

into well-founded safety factors to be incorporated in norms or 

guidelines, in order to ease the design process. 

 

Probabilistic design is used in various disciplines, like systems 

engineering, product design, structural engineering and hydraulic 

engineering. Cleary, it is also applicable to interventions in the traffic 

system (in this case aimed at alleviating traffic congestion). After all, 

traffic congestion is a phenomenon characterized by considerable 

variability and uncertainty. There are several sources of variability and 

uncertainty. A substantial part of the within-day and day-to-day 

variation can be explained by fixed social activity patterns. One of the 

most important uncertainties is the inherent uncertainty stemming from 

the fact that the traffic flow operations are the result of the human 

behavior of a heterogeneous collection of individuals (behavior with 

respect to travel decisions and way of driving). This behavior is 

predictable only to a limited extent. Another inherent uncertainty is the 

variation in external conditions, like varying weather circumstances and 

the occurrence of disasters. In an actual design/evaluation project, the 

limited data availability is often another important source of uncertainty 

(an epistemic uncertainty component). When predicting (and assessing) 

the situation in some future year, much more uncertainty is added. 

Prediction of future mobility levels and patterns is very difficult. The 

infrastructure supply available in some future year is uncertain as well. 

Another source of uncertainty is model uncertainty, related to the 

uncertainty in the traffic models used to forecast traffic operations (due 

to incompleteness/simplification). 

 

The relative importance of the various sources of uncertainty is 

dependent on the type of problem. When dealing with traffic 

congestion on the main road network, two levels of action can be 

discerned: the operational level and the strategic level 7. The operational 

level refers to the selection of control actions, considering the actual 

traffic situation and its expected development over the next few 

minutes/hours, using the available control facilities (like dynamic traffic 

management measures). At this level, there is of course no uncertainty 

related to the mobility level and patterns for some future year. The 

inherent uncertainty in traffic operations on the other hand is an 

important uncertainty component to be considered, as may be the 

                                                   
7 Often, three levels of action are discerned: the strategic level, the tactical level, and the 

operational level. In this document, the tactical level and strategic level are combined into one 

level, for the sake of convenience referred to as ‘strategic level’.  
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model uncertainty. The strategic level refers to actions on the longer 

term, like the realization of new infrastructure or dynamic traffic 

management facilities, or the implementation of a road pricing system. 

For the evaluation of this kind of actions, uncertainty related to the use 

of prognoses for the mobility in some future year is of course very 

important. 

 

At the operational level, uncertainties are currently not taken into 

account in calculating the optimal control for traffic networks. Recently 

some research effort has been devoted to find a new methodology, 

taking into account the uncertainty in the system dynamics. This is 

possible by using a stochastic prediction model instead of a 

deterministic model (as used in traditional optimal control theory) 

(Hoogendoorn et al, 2008). Such a method enables the consideration 

of not only the average system performance, but any other statistic of 

the stochastic system performance as well. This way, when selecting 

control actions, their robustness can be taken into account too. 

 

At the strategic level, the extent to which uncertainties are taken into 

account varies. Uncertainty related to the use of prognoses for the 

mobility and infrastructure supply in some future year is sometimes 

taken into account by considering a number of scenarios (based on 

forecasts produced by for example the national planning institute). In 

other cases, a simple sensitivity assessment is performed. Also the 

consideration of traffic model uncertainties and uncertainties related to 

limited data availability often remains limited to carrying out certain 

sensitivity tests at the most. In 2005 De Jong et al. developed a new 

methodology to estimate the amount of uncertainty in traffic forecasts 

for new infrastructure. In this method, model input uncertainties 

(related to the use of prognoses), uncertainties due to lack of data, and 

model uncertainties were included. Not all sources of these types of 

uncertainties were included though. Examples of uncertainties that 

were not included are the uncertainty in the traffic assignment 

procedures (procedures assigning the calculated traffic flows to the 

road network), and the uncertainty in the regional distribution of 

prognosticated input variables (De Jong et al., 2005). The main purpose 

of this study was to obtain an indication of the order of magnitude of 

the uncertainty. For practical use, the methodology is considered to be 

too complex. That is why usually still only scenario evaluation and 

sensitivity assessment are used. 

 

When planning new roads or dynamic traffic management facilities, the 

inherent variability and uncertainty in traffic operations are usually 

taken into account only in a limited or simplified way. Often a kind of 

‘representative’ or ‘average’ situation is calculated. (See for instance 

Mehran & Nakamura (2009): ‘Evaluation of the efficiency of congestion 

relief schemes on expressways has generally been based on average 

travel time analysis’). In case of planning a new road, the effects on the 

robustness of the traffic system are assessed by qualitative 

considerations or by an evaluation of the performance in some fictitious 

disturbance scenarios. In the process of planning new dynamic traffic 
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management facilities such considerations of disturbance scenarios are 

applied as well. 
  
In current traffic policy and research, much attention is paid to network 

reliability and robustness. Of course, inherent uncertainties in the 

variables/processes governing the traffic conditions play a central role 

in these concepts. 

 

1.2 Main research objective 

From the foregoing it can be concluded that: 

- traffic congestion has important probabilistic properties, but that  

- nevertheless this probabilistic nature often is not (completely) 

taken into account when dealing with traffic congestion. 

 

Rather than exploring how to deal with all types of variability’s and 

uncertainties, this research project primarily focuses on a subset of 

these: the inherent variability in traffic operations. With this inherent 

variability, the within-day and (more important) day-to-day variations 

in the traffic conditions are meant. These variations are caused by 

known patterns in human activities for one part, and by inherent 

uncertainty in traffic operations (resulting from the inherent uncertainty 

in the variables and processes governing these traffic operations) for 

the other part. 

 

The main objective of the research project can be defined as: 

 

To reveal what kind of additional or revised insights can be obtained 

from evaluations of the traffic system’s performance (in the context of 

considering taking strategic5 measures to alleviate congestion) when 

the inherent variability in daily motorway congestion is explicitly 

taken into account. (As opposed to the insights obtained by 

evaluations according to the more ‘traditional’ approach, in which 

only a kind of ‘representative’ situation is evaluated.)   

 

On purpose, this description of the research objective is specified in 

modest terms (i.e. using ‘to reveal what kind of’ and ‘can be obtained’, 

rather than ‘to establish which’ and ‘are obtained’). This is because of 

the fact that it will not be possible to make generally valid quantitative 

inferences, due to the fact that the exact additional/revised insights will 

typically be case-specific. That is, they will significantly depend on the 

spatial configuration (i.e. network layout and spatial traffic demand 

pattern) and any possible traffic measures considered. Obviously, not 

all of the possible spatial configurations can be considered here (simply 

because of the fact that their number is infinitely large). Instead, 

quantitative observations are made for just one such configuration. 

Furthermore, in this thesis only one specific measure is considered, by 

way of example. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Main research objective 
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As mentioned above, the research project focuses on the inherent 

variability in traffic operations (partially caused by the uncertainty that 

is inherent to these traffic operations). All other types of uncertainty 

identified in the previous section can be neglected here: 

- Because of the fact that it is not intended to come up with 

quantitative conclusions regarding specific real-life projects, 

uncertainty due to a lack of location-specific data is not 

important. The location-specific variables in question can be 

given any value within the range of values observed in reality.  

- Uncertainty related to the use of prognoses (for some future 

year) is not important either. This type of uncertainty typically 

only has to be included when dealing with an actual real-life 

project, in which a situation in a ‘design year’ needs to be 

assessed. 

- Obviously, quantitative analyses in this project do involve 

model uncertainty (related to incompleteness or simplifications 

in the traffic model) and uncertainty due to a lack of data. In 

fact, these uncertainties should be accounted for, by means of a 

comprehensive sensitivity assessment for example. This would 

be a very time-consuming and complicated matter, however, 

because of the very large number of degrees of freedom to be 

considered, and the difficulties in assessing the model 

uncertainty. In view of the fact that this project only intends to 

give an illustration of any possible additional/revised insights, 

and not to come up with firm quantitative inferences, it is 

considered acceptable to omit such an extensive uncertainty 

assessment. 

 

The most challenging part of the research project is to find a proper 

quantification method, enabling to take into account the inherent 

variability of traffic operations explicitly. This quantification method 

might also be useful in other contexts (outside the scope of this 

research project), for instance in actual projects aiming to alleviate 

traffic congestion in a real-life situation. However, in such situations 

probably extensive calibration procedures would be needed (related to 

the lack of location-specific data on the different model parameters), in 

order to ‘fit’ the method to the situation at hand. Furthermore, the 

remaining8 part of the uncertainty due to a lack of location-specific data 

would have to be accounted for, as should be the uncertainty related to 

the use of prognoses. 

 

                                                   
8 I.e., after the calibration procedures have been performed. 



 
 
 

 

 

 
 7 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

1.3 Research scope 

Daily traffic congestion 

 

This section sets down more formally the scope/boundaries of the 

research project. As indicated in the main research objective, daily 

traffic congestion is considered. This means that extremely exceptional 

situations, like disasters, are not accounted for. Note that the research 

does take into account incidents (like traffic accidents and vehicle 

breakdowns) and road works, as these occur such frequently that they 

indeed can be considered as everyday disturbances, contributing to 

daily traffic congestion. 

 

Motorway network 

 

The research project focuses on traffic congestion problems on the  

motorway network, rather than on traffic congestion problems on 

lower level networks. The motorway network is defined here as the 

network of roads with unidirectional roadways, a design speed of at 

least 100 km/h and grade separated crossings of traffic flows. This 

network accounts for more than half of the total yearly amount of 

kilometers traveled by car (RPB, 2004). 

 

Focusing on congestion problems on the motorway network does not 

directly imply that all other roads can be left out of account in this 

project. After all, the secondary road network might provide motorway 

users with opportunities to get around (exceptional) congestion on 

their motorway route. In order to account for this, in fact part of the 

secondary network should be included in the analyses as well. Within 

the scope of this project, incorporation of this effect of fallback on 

alternative routes turned out to be unfeasible, however (which will be 

explained later in this report). 

 

Note that the incorporation of lower level networks would complicate 

the analyses in several ways: 

- On the lower level networks, the frequencies of occurrence 

and/or effects of many of the sources of variability are clearly 

different from those on the motorway network. This means that 

much additional research would be needed into these aspects. 

- The traffic propagation over lower level networks is mainly 

governed by the traffic operations at intersections, which 

considerably complicates the traffic flow modeling. There are 

many different types of intersections. In case of uncontrolled 

intersections and intersections with traffic adaptive control, 

crossing traffic flows may affect each other’s capacities. At the 

(grade separated) crossings in motorway networks this is 

obviously not the case, unless congestion spills back from one 

road to the other. 
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- On most of the lower level roads, traffic is able to make U-turns 

when getting stuck in a heavy traffic jam. This is typically not 

taken into account in traffic simulation models. 

- Especially on urban networks, the finer mesh of the road 

network offers much more opportunities for traffic to get 

around heavily congested (or even completely blocked) road 

segments (for example in incident situations). This means that if 

the lower level networks would be included in the analyses, the 

incorporation of the route choice effect of (non-recurrent) 

congestion would be even more important for obtaining 

realistic results. This turned out to be unfeasible, however, as 

noted above.  

- If this route choice effect is not accounted for, a finer meshed 

network will be prone to the occurrence of gridlocks (i.e. 

situations with a ‘ring-shaped’ traffic jam, in which car drivers 

are basically ‘waiting for themselves’), which would cause 

problems in the traffic simulations. 

  

Focus on the Dutch situation 

 

Throughout the whole research project, focus has been on the situation 

found in the Netherlands. This is an important limitation, because in 

other countries certain influencing circumstances may well be different 

from those found in the Netherlands. 

 

For some influencing factors little information is available that 

specifically relates to the situation in the Netherlands. Out of necessity 

in such cases use had to be made of research results obtained in other 

countries, keeping in mind that these might not directly be equally valid 

for the Dutch situation. 
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1.4 Research questions 

The research necessary to achieve the main research objective has been 

divided in a number of steps, related to certain research questions, each 

addressing one specific part of the problem. 

 

In order to be able to evaluate the performance of the traffic system 

with regard to traffic congestion, first of all a clear view is needed on 

when the traffic system actually is considered to perform well and when 

it is not, because this is not something obvious. In fact, the 

consideration of the inherent variability adds an extra dimension to this. 

Therefore, the first research question that was dealt with reads: 

 

[Research question 1]  Which criterion(s) should be used to evaluate 

the performance of the traffic system with 

regard to traffic congestion (taking into 

account its variable nature)? 

 

In order to answer this question, the following two sub questions were 

considered: 

 

[Sub question 1.1]  What are the societal costs of traffic 

congestion, and how do these relate to the 

characteristics of this congestion? 

[Sub question 1.2]  Which indicator(s) to use for traffic congestion 

on the motorway network (and which limits to 

set on these)? 

 

Next, a method had to be found to evaluate the traffic system’s 

performance with respect to the criterion(s) set on traffic congestion. 

This problem was split up into two parts. First of all, the (probabilistic) 

mechanisms governing traffic congestion were examined: 

 

[Research question 2] Which (probabilistic) mechanisms are 

governing traffic congestion? 

 

This research question was addressed by considering the following sub 

questions: 

 

[Sub question 2.1]  What is the basic process governing traffic 

congestion at a road section?  

[Sub question 2.2]  Which disturbing influences are involved, and 

how can these be characterized in terms of 

frequency/probability of occurrence and 

effects? 

[Sub question 2.3]  Which dependencies between these disturbing 

influences are involved? 

[Sub question 2.4]  What is the role of network effects? 

 



 
 
 

 

 

 
 10 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

When these questions had been addressed, attention was focused on 

finding an actual quantification method: 

 

[Research question 3] How to quantify the traffic system’s 

performance with respect to traffic 

congestion, taking into account the variability 

in traffic operations? 

 

This research question was dealt with by addressing the following sub 

questions: 

 

[Sub question 3.1]  Which requirements does a quantification 

method need to meet? (taking into account 

the findings obtained in relation to research 

questions 1 and 2) 

[Sub question 3.2]  What type of quantification methodology is 

most appropriate? 

[Sub question 3.3]  Which methods taking into account the 

variability in traffic operations are currently 

available, and do these meet the 

requirements? 

[Sub question 3.4]  Which method to use? 

 

Regarding sub question 3.4 it has to be mentioned that not necessarily 

one of the methods considered in sub question 3.3 had to be selected. 

If none of the methods would meet the requirements to a satisfactory 

degree (which actually turned out to be the case), a new method would 

have to be developed. 

 

After all the research questions above had been dealt with (i.e. 

performance criterion(s) had been defined, and a quantification method 

had been developed), some quantitative analyses related to the main 

research objective were performed: 

 

[Research question 4] What kind of additional or revised insights 

can be obtained when traffic congestion is 

approached in a way in which its inherent 

variable nature is explicitly taken into 

account, as compared with the insights 

obtained by a ‘traditional approach’, in which 

only a kind of ‘representative’ situation is 

evaluated?9 

 

This research question was addressed in two steps (corresponding to 

the two sub questions below). First of all, it was considered whether 

the new evaluation approach can provide insights into the relative 

importance of different primary sources of traffic congestion (like 

events, special weather conditions, seasonal variations in the traffic 

                                                   
9  As indicated before, it was not striven for to come up with generally valid quantitative 

inferences here, because of the strong dependency on the specific case at hand. Rather, an 

illustration of the additional or revised insights was aimed at. 



 
 
 

 

 

 
 11 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

demand level, the intrinsic randomness in capacities, etc.). This ‘relative 

importance’ is to be understood as the relative contribution to the 

traffic system’s performance (in terms of the criterion(s) defined in the 

first part of this research project). Differences in the relative importance 

of different contributing factors may provide some new insights into 

the relative effectiveness (or ineffectiveness) of various categories of 

measures (aimed at alleviating traffic congestion). This kind of 

information typically can only be obtained when explicitly considering 

the inherent variability in the traffic congestion. 

 

Secondly, it was considered what kind of additional or revised insights 

can be obtained when using the new approach for the evaluation of 

the effectiveness of some proposed traffic measure. For this, the 

example of a rush-hour lane was considered. 

 

[Sub question 4.1]  Can the new evaluation approach provide us 

with insights into the relative contributions of 

different primary sources of traffic congestion 

to the traffic system’s performance (in terms 

of the criterion(s) specified earlier)? 

[Sub question 4.2]  What kind of additional or revised insights 

into the effectiveness of proposed measures 

aimed at alleviating traffic congestion can be 

gained when explicitly taking into account the 

variable nature of this congestion? 

 

In the figure below, the main structure of the research project is 

summarized. 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 1.2: Structure of the research 
project 
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1.5 Thesis outline 

This report does not one-on-one follow the sequence of the research 

questions indicated in the previous section. Instead of starting with the 

issue of selecting appropriate indicators for the level of traffic 

congestion, it starts with a discussion of the mechanisms governing 

traffic congestion and its variability (chapter 2). The reason for this is 

that this discussion might be beneficial for the understanding of the 

subsequent parts of the thesis. In the concerning chapter, first of all the 

basic interaction process between traffic demand and supply on a road 

section is explained (section 2.1). After this, all different sources of 

variability are discussed (section 2.2). Finally consideration is given to 

the network effects of traffic congestion (section 2.3). 

 

The next chapter then deals with the selection of appropriate 

performance indicators for the level of traffic congestion (taking into 

account the variable nature of this congestion). After a short 

introduction on this issue (section 3.1), section 3.2 deals with the 

question which features describing the traffic congestion phenomenon 

can be identified as being most decisive in bringing about costs to 

society (which typically are the features to be incorporated in the 

indicators). Section 3.3 describes which indicators are used in 

international literature, and which norms were used in the Dutch 

national traffic policy during the past few decades. In section 3.4 then 

the final selection of indicators is discussed. Finally a section has been 

added that discusses the strong relationships that in various empirical 

studies have been found to exist between the average travel time (or 

delay) and other indicators based on travel time statistics, and their 

implications for this research project (section 3.5). 

 

Chapter 4 discusses the selection of a quantification methodology for 

research questions 4.1 and 4.2. After an introductory section, section 

4.2 discusses what type of methodology is most appropriate for 

illustrating the gain of new insights into the relative importance of 

different primary sources of traffic congestion (corresponding to 

research question 4.1). Similarly, section 4.3 then discusses what type 

of methodology is most appropriate for illustrating the gain of 

additional or revised insights (if any) into the effectiveness of specific 

measures (corresponding to research question 4.2). Next, in section 4.4 

a list is given of the requirements to be met by a quantification model. 

Section 4.5 then considers a variety of quantification models that are 

used in practice or proposed in literature. Here it is also assessed to 

which extent these models meet the requirements from section 4.4.   

 

Since none of the models was found to be sufficiently adequate for the 

tasks at hand, a new model was developed. This quantification model is 

described in chapter 5. The different sections of this chapter 

successively discuss the general concept of the model (5.1), its 

approach to the traffic flow modeling (5.2), and its general approach to 

the modeling of the variations in traffic demand and supply (5.3). A 
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detailed description of the ways in which the various individual sources 

of variability are modeled is given in section 5.4. 

 

During the development of the model some modeling issues have come 

to light which require further consideration. These issues are discussed 

in chapter 6. Since they generally require substantial further research, it 

was not possible to actually solve them within this project. However, 

besides explaining the different issues, chapter 6 also tries to suggest 

some possible strategies to deal with them. This includes a possible 

strategy for reducing the required number of simulations. 

 

A model is a simplified representation of a part of reality. In order to be 

able to make sound inferences with such a model, it has to be 

sufficiently valid for the task at hand. In sections 7.1 - 7.4, the 

developed model is assessed on three different levels of validity. This is 

based solely on theoretical considerations. Normally, one would assess 

the final validity of a model by means of a quantitative validation 

procedure. In section 7.5 it is argued, however, that the developed 

model cannot be quantitatively validated in the usual way. Yet, some 

quantitative considerations are given in this section. These are 

considerations of a more general nature, relating to the computed 

congestion levels. 

 

Chapter 8 then discusses the results of the quantitative evaluations with 

the model. Here it is considered what kind of additional insights are 

obtained by explicitly taking into account the inherent variable nature 

of the traffic conditions. After an introductory section, the chapter 

starts with a description of the network for which the model 

evaluations have been performed (section 8.2), and a description of 

some restrictions/simplifications with respect to the indicators 

considered (section 8.3). After that, section 8.4 discusses the model 

outputs for the representative situation, which typically are the outputs 

obtained by a traditional calculation of the traffic conditions in a 

network. Next, section 8.5 treats the results obtained by a calculation in 

which the different sources of variability are taken into account, and 

compares these with the output for the representative situation. Section 

8.6 then shows that the relative importance of these different sources 

can be studied by deactivating them in the model. Section 8.7 considers 

the effects of a rush-hour lane, as computed with the new model, in 

which various sources of variability are taken into account, and 

compares these with the effects that would have been found with a 

calculation according to the traditional approach (considering a 

representative situation only). Chapter 8 ends with a section on the 

practical applicability of the developed model. In this section it is 

discussed whether/how this model could be used for practical 

application within the context of real-life evaluations of measures 

proposed to alleviate traffic congestion. 

 

In chapter 9 finally some conclusions and recommendations are 

provided, as well as some practical implications of the findings 

obtained. 
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2. Mechanisms governing traffic congestion and its variability 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In this chapter, the phenomenon of traffic congestion and the causes 

for its variability are examined in more detail. Section 2.1 describes the 

basic mechanism governing traffic congestion on a road section. The 

sources of the variability in this congestion are discussed in section 2.2. 

An important characteristic of the traffic system is that the traffic 

conditions on the different road sections may interact with each other. 

These interaction processes (referred to as ‘network effects’) are 

explained in section 2.3. 

 

2.1 Basic mechanism governing traffic congestion on a 

road section 

Traffic flow operations on a road section are governed by the 

interaction between the traffic demand (the amount of traffic wanting 

to traverse the section) and the traffic supply (the available capacity). In 

order to explain this interaction process, an initially empty road section 

is considered for which the traffic demand gradually rises, starting from 

zero. At the end of the road section there is a bottleneck: a stretch of 

road with a lower capacity. Apart from this bottleneck, the road section 

is homogeneous. There are no connections to other roads. 

 

As long as the traffic demand is smaller than the capacity of the 

bottleneck, the traffic conditions are referred to as being ‘free flow’. 

The average traffic speed for an (almost) zero traffic volume is referred 

to as the ‘free speed’. The value of this speed usually is governed by 

the speed limit, the amount of speeding, and the percentage freight 

traffic. For slightly larger traffic demands, the average traffic speed 

hardly decreases. For even larger demands however, the average traffic 

speed gradually decreases, to about 80 km/h if demand reaches 

capacity (the so-called ‘capacity speed’, or ‘critical speed’). 

 

If at a certain moment traffic demand exceeds capacity in a certain 

cross section of the road section, the traffic flow breaks down. The 

excess demand is stored in a queue, forming upstream of the 

bottleneck. In several studies the outflow rate at the head of a queue 

(referred to a as the ‘queue discharge rate’) is found to be smaller than 

the maximum flow rate before the traffic flow breaks down (referred to 

as the ‘free flow capacity’). This difference in capacity is called the 

‘capacity drop’. It is in the range of 1 to 15 percent (Hoogendoorn, 

2007). In a way, the capacity drop makes the occurrence of traffic 

congestion a self-reinforcing process: once congestion has set in, 

capacity is reduced, resulting in the traffic conditions deteriorating 

more rapidly (as compared with the situation without a capacity drop).  
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The traffic conditions within the queue are referred to as being 

‘congested’ or ‘forced’. Within the queue, the average traffic flow (i.e. 

the average number of vehicles passing a certain cross section per unit 

of time) is determined by the discharge rate at the head of the queue. 

This is only true though if this traffic flow is averaged over a sufficient 

amount of time. Due to the fact that within the congested traffic stop-

and-go waves may form, over shorter periods of time the flow might 

temporarily be larger or smaller. 

 

Obviously, the average speed in the queue is dependent on the average 

traffic flow in this queue. When this average flow is larger, the average 

speed in the queue is larger as well. If the traffic flow in the queue is 

zero, the speed is zero too. 

 

All the relationships and notions discussed above are depicted in Figure 

2.1. This figure shows an example of the so-called ‘fundamental 

diagram’ for a cross section of a road. It describes the average 

equilibrium relationship between traffic flow (q) and velocity (u). With 

‘equilibrium’ it is meant that this relation is only valid for stationary 

traffic conditions. Transient traffic states will deviate from this 

relationship. Also note that it is only an average relationship. Real-life 

data are widely scattered around this average. In particular this is the 

case for the ‘congested branch’ of the fundamental diagram.  

 

Finally it should be stressed that a fundamental diagram is in its entirety 

related to one and the same cross section of a road. If the fundamental 

diagram depicted in Figure 2.1 for example would belong to a cross 

section upstream of the bottleneck, then the indicated capacities thus 

also would concern the capacities of this particular cross section, and 

not the (lower) ones of the bottleneck. 

 

For distinct cross-sections, the fundamental diagram can be rather 

different (including the values of the free flow capacity and the queue 

discharge rate). This is not only the case if these are cross sections of 

different roads. Cross sections of one and the same road may show 

differences too. This might be due to differences in for example lane 

width, grade or curvature. 
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The fundamental diagram is also known in two other forms. This is 

illustrated in Figure 2.2. In the fundamental diagram on the left, the 

relation between the traffic flow (q) and the traffic density (k) (i.e. the 

number of vehicles present per unit of distance) is depicted. In the 

fundamental diagram on the right, the relation between the speed (u) 

and the density (k) is presented. In fact, these fundamental diagrams 

represent exactly the same information. They can easily be converted 

into each other by using the relationship q=k٠ u. This well-known 

relationship, valid for stationary and homogeneous traffic states, is 

referred to as the ‘fundamental relation’. 

 

 
 

As long as the traffic demand (corresponding to the inflow to the 

queue) remains higher than the queue discharge rate, the queue keeps 

on growing. As a consequence, the delay that road users experience 

keeps on increasing as well. Note the important role of the capacity 

drop in this respect. Only as soon as the traffic demand decreases to a 

value below the queue discharge rate, the queue will start to dissolve. 

Gradually the length of the queue will decrease, until it is completely 

dissolved (and free flow traffic conditions are restored again).  

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.1: Fundamental diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.2: Other forms of the 
fundamental diagram 
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Note that the physical length of a queue does not directly follow from 

the number of vehicles in this queue and the number of lanes on which 

they are ‘stored’. Obviously, the physical length is dependent on the 

(average) traffic density within the queue as well. This density can be 

derived from the fundamental diagram, using the flow rate in the 

queue. This flow rate follows from the capacity of the downstream 

bottleneck (responsible for the queue) and possible flows leaving or 

entering the queue somewhere in between its head and tail.  

 

A complicating factor in the process governing traffic congestion is 

that, especially in the somewhat longer term, the traffic demand is not 

independent of the traffic supply. If the quality of the traffic supply is 

improved (for example by adding some extra capacity) traffic demand 

will increase. 

 

2.2 Sources of temporal variation in traffic congestion 

2.2.1 Introduction 

In chapter 1 it was pointed out that the traffic conditions on the main 

road network show a significant degree of variability, not only over the 

course of the day, but also between days. This variability is due to a 

significant variation in both traffic demand and traffic supply (capacity). 

Illustrations of this variability in traffic demand and supply can be found 

in (Tu, 2008) en (Brilon, 2005), respectively. Tu gives some data on the 

variability in the total number of car trips that are made in the 

Netherlands during the peak hours of a working day. On average, this 

number amounts to 5.5 million trips. However, on the 5% quietest 

working days this number is less than 4 million (a difference of more 

than 25%), whereas on the 5% busiest days there are more than 6.9 

million trips by car (again a difference of more than 25%). For the 

number of trips during the off-peak part of the day a similar bandwidth 

is found. 

 

Brilon gives some data on the variability of the capacity of a number of 

German freeway sections. For the capacities of these freeway sections 

(calculated from 5-minute counts) coefficients of variation of about 9% 

have been found 10 (considering each freeway section individually). In 

view of this significant variability, it is in fact quite striking that the 

capacity traditionally is treated as a constant value in traffic engineering 

guidelines around the world. 

 

For both the temporal variability in traffic demand and the temporal 

variability in traffic supply a large number of causes can be discerned.  

 

                                                   
10 Note that these are all freeway sections without a distinct bottleneck. For freeway sections 

with a distinct bottleneck of course different values might be obtained. 
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As for the traffic supply, the following sources of variability are 

identified: 
- variations in weather conditions 
- variations in luminance 
- incidents 
- road works 
- traffic control actions 
- variations in vehicle population 
- variations in driver population 
- ‘intrinsic’ variations in human behavior11 
- demonstrations 
- emergencies 

 

Regarding the demand fluctuations, the following factors are 

distinguished: 
- regular pattern of variation in human travel behavior over the day  
- regular pattern of variation in human travel behavior over the 

days of the week 
- regular pattern of variation in human travel behavior over the 

periods of the year 
- public holidays 
- events 
- strike actions 
- weather conditions 
- road works 
- emergencies 
- other variations in human travel behavior 

(i.e. those not explained by the aforementioned factors) 

 

Two other factors influencing the traffic demands are: 
- travel behavioral changes in response to traffic information 
- travel behavioral changes in response to one’s recent travel 

experiences 

 

In spite of the fact that these two factors affect the traffic demands in a 

variable way as well, they actually cannot really be considered sources 

of fluctuations. After all, in fact they only exist because of variations in 

traffic conditions that are caused by other (i.e. ‘real’) sources of 

fluctuations in traffic demand and supply. If these latter sources would 

not exist, the two factors mentioned above would not exist either. 

After all, if there would not be any variations in traffic conditions at all, 

traffic conditions would be fully predictable in advance. Consequently 

there would be no question of changing one’s travel behavior in 

response to information on the actual traffic conditions or one’s own 

recent travel experiences. 

 

                                                   
11 Note that most of the other sources of variability have a behavioral component as well. For 

example, weather conditions affect the traffic conditions by affecting the driving behavior. 

The item ‘intrinsic variations in human behavior’ rather refers to the fact that in spite of 

finding himself in similar circumstances, one and the same person may still behave differently. 

Furthermore, there are obviously variations in behavior between different individuals (even if 

these belong to one and the same driver population). These variations are categorized under 

this heading ‘intrinsic variations in human behavior’ as well. 
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It should be noted that at the level of an individual road section, the 

variability in the traffic conditions on other sections of the road 

network might be a source of variability as well. After all, due to the 

occurrence of network effects (i.e. interaction effects between the 

different sections of a network), traffic conditions on other road 

sections might affect the traffic demand and discharge capacity of the 

road section under consideration. In this section these network effects 

are not considered however. These effects are the topic of section 2.3. 

Note that these network effects cannot really be seen as sources of 

variability. Considered at the network level, they are merely part of the 

processes that determine how variations in demand and supply 

conditions finally affect the traffic conditions on the network. 

2.2.2 Classification 

The various sources of variations are different in nature. They can be 

classified in different ways. First of all a distinction can be made 

between regular (or systematic) variations, occurring according to some 

regular pattern over time, and irregular variations. Another distinction 

that can be made is between sources of variability that have a 

continuous (though variable) influence on the traffic demand and/or 

supply, and sources of variations that affect the traffic demand and/or 

supply only during well-defined spaces of time. For the rest of the 

time, the effects on demand and supply are zero. These latter sources 

of variability can be referred to as ‘events’ or ‘disturbances’.  

 

Finally, yet another way to classify the various sources of fluctuations is 

according to their spatial scope. Some sources of variations affect the 

traffic demand and/or supply network wide, while others affect the 

demand and/or supply only locally. Some sources of variability have a 

spatial scope that is in between the network level and the local level. In 

such cases for example a certain subarea of the network might be 

affected, or a specific group of origin-destination relations.  

 

It should be noted that if the traffic demand and/or supply are affected 

at an above-local level, this of course not necessarily means that the 

effect is homogeneous in magnitude. This means that effects occurring 

at an above-local level in fact might have some local component as 

well. Actually, some effects might even differ in ‘direction’ among 

different locations. Consider for example the demand effect of the 

summer vacation period. On some routes, daily traffic demands might 

be lower during this period (especially on routes with relatively much 

commuting traffic), while there might also be routes on which the 

traffic demand is larger (especially on routes with relatively much 

recreational traffic).  

 

Further it should be noted that a substantial part of the sources of 

variability can take place at different spatial levels. Adverse weather 

conditions for example might be local in nature (like in case of a small, 

yet possibly heavy shower), cover the whole network (like in case of an 

extensive rain belt), or somewhere in between (like in case of a small 

rain front). Also note that if the primary effect on traffic 

demand/supply is only local in nature, the consequence for the traffic 
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conditions actually might have a much larger spatial scope (due to the 

occurrence of network effects, which will be discussed in section 2.3). 

 

In the two tables below, all sources of variations in traffic demand 

(Table 2.1) and supply (Table 2.2) are assigned to classes formed by 

combining the three classification systems discussed above. The 

columns and rows of the tables represent two of these c lassification 

systems. Symbols are used to indicate the third classification. Inevitable, 

in some cases this assignment to categories is debatable to some 

extent. The variation in weather conditions for example is assigned to 

the class ‘events/disturbances’, whereas in reality variations in weather 

conditions are practically continuously present. However, bad weather 

conditions (or just the opposite: summery weather conditions) can be 

distinguished reasonably well from the more ‘everyday’ weather 

conditions. Therefore it was decided to assign the variation in weather 

conditions to the category ‘events/disturbances’, in spite of its 

continuous element. Another example of a classification that is 

debatable to some extent is the assignment of the influence factor 

‘events’ to the category ‘sources of irregular variations’. In fact, a lot of 

events are organized every year again, at the same moment of the year 

(similar to public holidays). This subset of events therefore rather 

belongs to the category ‘sources of regular fluctuations’. 

 
 

Time span 
 
Degree of regularity 

Continuously present 
 

Event / Disturbance 
 

Sources of regular 
variations 

Regular pattern of travel 
behavior over the 
day (N) 

Regular pattern of travel 
behavior over the 
days of the week (N) 

Regular pattern of travel 
behavior over the 
periods of the year 
(N) 

Public holidays (N) 

 
Sources of irregular 

variations 

Unexplained variations 
in human travel 
behavior (B) 

Varying weather (N/B) 

Road works (B) 

Events (B) 

Strike actions (N/B) 

Emergencies (N/B) 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.1: Classification of the 
various sources of variations in the 
traffic demand according to time 
span (horizontal), degree of 
regularity (vertical) and spatial scope 
(N=network-wide, L=local, B=’in 
between’) of their effects 
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Time span 
 
Degree of regularity 

Continuously present 
 

Event / Disturbance 
 

Sources of regular 
variations 

Var. in vehicle 
population (N)  

Var. in driver population 
(N) 

Darkness (N) 

 
Sources of irregular 

variations 

Var. in vehicle 
population (B)  

Var. in driver population 
(B) 

Var. in human behavior 
(L) 

Incidents (L) 

Demonstrations (L) 

Emergencies (N/B/L) 

Varying weather 
(N/B/L) 

Road works (L/B) 

 

Note that in Table 2.2 the influence factors ‘variations in vehicle 

population’ and ‘variations in driver population’ are assigned to both 

the categories ‘sources of regular variations’ and ‘sources of irregular 

variations’. This is because of the fact that these sources of variations to 

a large extent can be described by regular patterns over time 

(representing their systematic parts), but still with a part of the 

variations remaining unexplained (representing their random/irregular 

parts). 

 

In Table 2.2, the influence factor ‘traffic control actions’ is omitted. This 

is because of the fact that it cannot really be assigned to one of the 

categories. Some traffic control actions influence the supply conditions 

on a continuous basis, while others are active only during specific 

periods in time. Furthermore, some types of traffic control are regular in 

nature, while others act in a traffic responsive (and thus partially 

irregular) way. 

 

Note that the category of irregular events/disturbances can be further 

divided into circumstances that are planned (road works and events) 

and circumstances that are unplanned (incidents and emergencies). 

Strike actions, demonstrations and varying weather conditions cannot 

be unambiguously assigned to one of these two categories. 

2.2.3 Relevant characteristics of the various sources of fluctuations 

In the following subsections the various sources of fluctuations listed 

above are discussed in more detail. Table 2.3 shows the important 

aspects to be considered for the different categories of sources of 

variability. For the sources of variability that are continuously present, 

consideration is given to their patterns over time, or to the magnitude 

of their stochastic fluctuations (depending on whether it concerns a 

source of regular (i.e. systematic) variation or a source of irregular 

variation). For the sources of variability that can be referred to as 

‘events/disturbances’, consideration is given to both their frequencies 

of occurrence (deterministic or stochastic) and the magnitude of their 

effects. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.2: Classification of the 
various sources of variations in the 
traffic supply according to time span 
(horizontal), degree of regularity 
(vertical) and spatial scope 
(N=network-wide, L=local, B=’in 
between’) of their effects 
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Time span 

 
Degree of regularity 

Continuously present 
 

Event / Disturbance 
 

 
 

Sources of regular 
variations 

 
 

(deterministic) pattern 
over time 

- frequency of 
occurrence 
(deterministic) 

 
- effect 

 
 

Sources of irregular 
variations 

 
 

magnitude of the 
stochastic fluctuations 

- frequency of 
occurrence 
(stochastic) 

 
- effect 

 

It should be noted that in this context ‘effect’ refers to the influence on 

the demand or supply, and not to the final impact on the traffic 

conditions, created through the interaction between demand and 

supply. To distinguish this final impact on the traffic conditions from 

the influence on the demand or supply, the latter is called ‘effect’, 

while the former is termed ‘consequence’. This is illustrated in Figure 

2.3. 

 

 
 

First, in sub section 2.2.4, the sources of demand fluctuations are 

considered. In subsection 2.2.5 the sources of supply variations are 

discussed. It should be noted that the various sources of variability are 

not all independent from each other. In fact there are a lot of non-

linear, dynamic dependencies involved between these fluctuations. This 

topic is shortly returned to in subsection 2.2.6. 

2.2.4 Sources of the temporal fluctuations in traffic demand 

 

1) Regular pattern of variation in human travel behavior over the day 

 

Due to the fact that the traffic demand is strongly related to people’s 

activity patterns, there is a clear relation between the time of the day 

and the size of the traffic demand. During the nighttime, traffic 

demand is typically very small, while during the daytime traffic demand 

is much larger. On working days two clear peaks can be observed in 

the traffic demand pattern. These are related to commuters traveling 

from home to work and back. Weekend days are clearly different in this 

respect. On these days clear peaks in the traffic demand are typically 

lacking. This can be illustrated with Figure 2.4, showing the traffic 

demand pattern over the course of the day for the Dutch A12 

motorway, separately for working days and weekend days. It should be 

noted, however, that the patterns shown in this figure in fact are traffic 

flow patterns. These actually might be different from traffic demand 

patterns, since they might be affected by the occurrence of traffic 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.3: Relevant aspects for the 
different categories of sources of 
variability in traffic demand and 
supply 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.3: Distinction between 
effect and consequence 
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congestion. After all, due to this traffic congestion, the peaks in the 

measured traffic flow might be less pronounced than the peaks in the 

traffic demand. 

 

 
 

Often the two peaks in the working day demand pattern are different 

in size. This then is due to the commuting traffic being unequally 

distributed over the two directions. In Figure 2.4 such a difference 

between the two peaks can be observed as well. 

 

Obviously, the validity of the patterns in Figure 2.4 is limited to only 

one specific measurement location (on the A12 motorway). For other 

road sections the course over time might be rather different. In (Hilbers 

et al, 2004) some general (i.e. average) data on the relative traffic 

demands for various periods of the day is given. Using these data, the 

diagram shown in Figure 2.5 has been constructed. This diagram shows 

the relative hourly traffic demands for various time intervals of the day, 

normalized with the average hourly traffic demand over the period 

between 6:00 and 24:00. Note that one time interval in this diagram 

has a length that deviates from the length of the other intervals: the 

largest part of the daytime off-peak period is put together in one time 

interval (between 9:00 and 15:00). 

 

It should be noted here that there are two limitations associated with 

these data, which are relevant in the context of this discussion. First of 

all, the data are most likely related to ‘private’ trips (including home-

work trips) only. This means that ‘professional’ trips are not taken into 

account. The latter are typically relatively evenly distributed over the 

daytime period. Secondly, the data are related to all car trips together, 

so not specifically to the traffic on the motorway network. Obviously, 

the trips over the motorway network might be distributed over time 

(somewhat) differently than the other car trips. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.4: Time dependent 
variations in the traffic flow on the 
Dutch A12 motorway (southern part) 
on working days and weekend days, 
based on data from the year 2004 
(Source: Tu, 2008) 
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From Figure 2.5 the hourly traffic demand during the evening peak 

appears to be somewhat larger than the one during the morning peak. 

Of course, though, this is just an average pattern. For individual road 

sections the course over time might be very different, as discussed 

already in relation to Figure 2.4. From the figure it also appears that for 

both peak periods in the second hour the traffic demand is somewhat 

larger than in the first hour. 

 

2) Regular pattern of variation in human travel behavior over the days 

of the week 

 

As was already indicated above, the traffic demand on working days is 

rather different from the traffic demand on weekend days (which is due 

to significantly differing human activity patterns). On weekend days 

clear peaks in the traffic demand are typically lacking and the traffic 

demand sets in much later than on working days. All in all the total 

daily traffic demand generally is significantly smaller on weekend days. 

However, the actual size of this difference shows a relatively large 

variation among different locations on the motorway network (BGC, 

1986). 

 

While working days are different from weekend days, to some degree 

the different working days (Monday to Friday) are mutually divergent 

as well. Based on data from 1984 and 1985, BGC (1986) found that the 

total daily traffic demand on Dutch motorways gradually increases in 

the course of the week, meaning that the daily traffic demand is lowest 

on Mondays and highest on Fridays. More recently (based on data from 

1995 and 2000), Harms (2003) found a similar result, as shown in 

Table 2.4. These results however should be interpreted with care, since 

they are related to the mobility as a whole (including all transport 

modes) and thus not specifically to the traffic demand on motorways. 

Another important limitation is that the results are based on an analysis 

of the ‘private’ trips only. Professional trips were not considered.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.5: Relative hourly traffic 
demands for different periods of the 
day, normalized with the average 
hourly traffic demand over the period 
between 6:00 and 24:00  
(Based on data from Hilbers et al, 
2004) 
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Weekday Mon Tue Wed Thu Fri 

Index of total mobility (Mon=100) 100 107 107 110 116 

 

Hilbers et al (2004) provide data specifically for the car trips (but still 

for all road networks together, rather than for the motorway network 

alone). These are shown in Table 2.5. According to these results, the 

peak period demands on Tuesday through Thursday are more or less 

equal, while those on Monday and Friday are slightly lower (based on 

fixed peak time windows of 7:00 - 9:00 and 16:00 - 18:00). For the 

off-peak periods (defined as the remaining parts of the period 6:00 - 

24:00), traffic demand increases from Monday to Friday. From the 

separate indices for the peaks and off-peaks one can also compute the 

indices for the daily totals, by taking the average of these indices, 

weighted according to the average numbers of trips during the peak 

and off-peak (5.7 million and 10.5 million, respectively). Based on the 

resulting indices (included in Table 2.5) one can conclude that the daily 

traffic demand gradually increases in the course of the week. This is in 

line with the results of BGC mentioned above. 

 

Weekday Mon Tue Wed Thu Fri 

Relative traffic demand peak 
(mean peak = 1) 

0.96 1.03 1.02 1.02 0.98 

Relative traffic demand off-peak 
(mean off-peak = 1) 

0.90 0.97 1.01 1.04 1.08 

Relative traffic demand 
peak and off-peak combined 
(mean weekday = 1) 

0.92 0.99 1.01 1.03 1.04 

 

Friday is the day that distinguishes itself most from the other weekdays. 

On this day, the evening peak starts much earlier than on the other 

days, and lasts longer. This results in the Friday evening peak being 

significantly longer than the evening peaks on the other days (though 

not significantly higher). This is clearly observable in Figure 2.6, 

showing the hourly traffic intensity patterns for the various days of the 

week, obtained for a measurement location on the Dutch A2 motorway 

(near Maarssen).  

 

In fact not only the evening peak is different on Fridays, but the 

morning peak and daytime off-peak period as well. On Fridays the 

morning peak traffic demand is typically smaller than on the other days. 

During the daytime off-peak period there is more traffic than on the 

other working days. While Monday through Thursday show an almost 

symmetrical off-peak period between the morning and evening peak, 

on Friday the traffic demand monotonically increases from about 10 

a.m. until the (gradual) transition to the evening peak (BGC, 1986). To 

a more limited extent than Friday, Monday is different from the other 

working days as well. On this day the morning peak is smaller than on 

the other working days. 

                                                   
12  Data relating to the numbers of trips longer than 7.5 minutes, per quarter of an hour 

(where one trip might be counted in multiple quarters), excluding professional trips and trips 

of persons younger than twelve years. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.4: Relative level of the total 
mobility on the different weekdays 
(Based on data from Harms, 200312) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.5: Relative level of traffic 
demand (car trips only) on the 
different weekdays 
(Based on data from Hilbers et al, 
2004) 
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The two different weekend days, Saturday and Sunday, show some 

mutual differences as well. On Sundays the traffic demand can be 

expected to set in later than on Saturdays. This is confirmed by the 

patterns shown in Figure 2.6. In this figure it can also be observed that 

on Sunday the traffic demand is relatively high during the early night 

(i.e. the night from Saturday on Sunday). Considering the total daily 

traffic demands, there is no general rule for the difference between 

Saturdays and Sundays. On some locations the daily traffic demand is 

higher on Saturdays, while on the other locations it is higher on 

Sundays (BGC, 1986).  

 

 
 

Weijermars and Van Berkum (2007) grouped daily traffic profiles on a 

Dutch highway location by applying clustering analysis. A pre-

classification in working days and non-working days was applied to 

successfully improve the clustering results. For the subsequent 

clustering of the working days a satisfactory result was obtained (i.e. a 

clustering with a small remaining variation within all individual clusters). 

In general, Mondays and Fridays were classified to separate clusters 

(i.e. one with Mondays and one with Fridays). Tuesdays, Wednesdays 

and Thursdays were classified to the same cluster. This confirms what 

was discussed above.  

 

The results of the mutual clustering of non-working days were less 

satisfactory. There remained a substantial variation within some of the 

clusters, in spite of the fact that the clusters were already rather small. 

Therefore, Weijermars and Van Berkum concluded that it is not possible 

to distinguish recurrent traffic patterns for non-working days, probably 

caused by the fact that these days show less fixed activity patterns. This 

conclusion is also supported by the fact that several other studies have 

shown that weekend days show a larger variability in traffic demand 

than weekdays (Weijermars, 2007). 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.6: Hourly traffic intensity 
patterns for the different days of the 
week (excluding public holidays), as 
obtained for a measurement location 
on the Dutch A2 motorway. 
(1=Saturday, 2=Sunday, …, 
7=Friday). 
(Source: De Vries & Praagman, 1995) 
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3) Regular pattern of variation in human travel behavior over the 

periods of the year 

 

Over the different periods of the year, traffic demands are not 

constant. Vacation periods play an important part in this. During these 

vacation periods traffic demand is lower. Probably this effect is most 

apparent in the morning and evening peaks of the traffic demand 

pattern. This hypothesis seems to be confirmed by the results of the 

clustering analysis performed by Weijermars and Van Berkum (2007). 

In this clustering analysis days within a vacation period were classified 

to a separate cluster that showed a flatter daily flow profile.  

 

At the start and end of vacation periods however just the opposite 

effect may occur: higher (peaks in) traffic demand due to a large 

amount of vacation traffic. In the Netherlands the government tries to 

limit this effect though, by staggering vacations. This seems to be 

successful: Bexelius and Kengen (1993) conclude from a study on the 

characteristics and predictability of the days with the highest traffic 

demands that the contribution of the summer vacation months (i.e. July 

and August) to the list with the busiest days is remarkably modest (at 

least for the roads that were included in their analysis). 

 

However, from one of the tables in their article (showing the days with 

the busiest afternoons in 1991) it can be derived that the start and end 

of the autumn vacation week might give significant peaks in the traffic 

demand. On the last workday before the vacation (a Friday) the traffic 

demand during the late afternoon was higher than usual. On the 

Wednesday halfway the vacation and the Friday and Sunday at the end 

of the vacation period, this was the case as well. It should be noted that 

the vacation traffic at the end of the vacation (i.e. the returning traffic) 

might have a dominant orientation that is opposite to the one of the 

vacation traffic at the start of the vacation period (i.e. the leaving 

traffic). This of course will be dependent on the geographical situation 

of the road section considered.  

 

Hilbers et al. (2004) provide some quantitative data on the vacation 

effects and other (remaining) seasonal effects on the working day 

traffic demand. These data are plotted in Figure 2.7 and Figure 2.8, 

separately for the peak periods and off-peak periods respectively. Again 

it should be noted that the data relate to the total population of car 

trips, rather than to the subpopulation of car trips over the motorway 

network. Furthermore, most likely the data are limited to private trips 

only. 

 

Figure 2.7 shows that in vacations, the average peak period traffic 

demand is more than 20% lower than on non-vacation working days. 

According to Figure 2.8, during the off-peak periods this effect is only 

about half as large. From the figures also a seasonal variation over the 

various months of the year can be observed (even though the monthly 

data have been corrected for the vacation effect). During the summer 

months the traffic demand is typically lower than during the winter 

months. This might (partially) be explained by the fact that some trips 
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are made by bike in the summer, while these are made by car in the 

winter. Since this latter phenomenon will be restricted to the relatively 

short distance trips, the seasonal variation in the motorway network 

traffic demand might be more limited than the seasonal variation in the 

total traffic demand shown in the figures. 

 

December shows a remarkably high off-peak traffic demand (Figure 

2.8). This probably is related to special activities during the publ ic 

holidays in this month (like family visits) or other social or recreational 

activities during the Christmas vacation period.  

 

 
 

 
 

An empirical study of BGC (1986) for a large set of measurement 

locations on the Dutch motorway network (based on a dataset for the 

period 1975-1984) revealed that the pattern of variation over the 

months of the year is in fact quite variable among various locations on 

the motorway network, especially as far as the summer months are 

concerned. On part of the locations a dip in the traffic demand can be 

observed during these summer months (related to the summer vacation 

period), while on another part of the locations a (substantial) peak can 

be observed during these months. Most likely this peak can be 

attributed to additional (recreational) traffic during the off-peak periods 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.7: Vacation effects and other 
seasonal effects on the working day 
peak period traffic demand (average 
working day peak period traffic 
demand = 1) 
(Data from Hilbers et al, 2004) 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.8: Vacation effects and other 
seasonal effects on the working day 
off-peak period traffic demand 
(average working day off-peak period 
traffic demand = 1)  
(Data from Hilbers et al, 2004) 
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(and not so much to additional traffic during the peak periods), 

although BGC did not examine this. 

 

Remarkably, BGC (1986) found that the traffic demands during the 

winter months (especially during December and January) are relatively 

low as compared with the yearly average, which is in contradiction to 

the results of Hilbers et al (2004), as can be seen from the figures 

above. One possible explanation for this might be that the extra winter 

trips found by Hilbers et al. are to a large extent shorter distance trips 

(possibly trips that are made by bike in the summer), for which 

relatively little use is made of the motorway network. Another partial 

explanation might be found in the Christmas vacation period, for which 

in the study of Hilbers et al. a general vacation correction is applied. 

Yet another possible explanation could be that in the twenty years 

between the two studies some behavioral changes have taken place. 

However, since De Vries and Praagman (1995) in a later study (based 

on data from 1993) found something similar for the winter months as 

BGC (except for December, for which the average traffic demand was 

found to be only slightly below the yearly average), this latter 

explanation seems not very plausible. Finally, a possible explanation 

might be that the winter period traffic demand in the study of Hilbers 

et al. was relatively high ‘by coincidence’ (which m ight be the case 

because of the fact that data from only one single year were 

considered). 

 

4) Public holidays 

 

Just like during vacation periods, on public holidays the usual (working 

day) peaks in traffic demand are less pronounced or even absent. In the 

Netherlands these public holidays are: New Year’s Day, (Good Friday), 

Easter Monday, Queen’s Birthday, (Liberation Day), Ascension Day, 

Whit Monday, Christmas Day and Boxing Day. If such a public holiday 

falls on a Tuesday or Thursday, many people take the preceding 

Monday or following Friday off as well, resulting in the peak period 

traffic demands to be lower on these days too. 

 

In spite of the demand reduction mentioned above, on certain parts of 

the road network the traffic demand might be higher on public 

holidays, related to events or other recreational destinations attracting a 

lot of traffic. In most cases this increase in traffic demand (as compared 

with normal working day conditions) will be limited to the off-peak 

periods. Events are discussed in more detail below. In this thesis public 

holidays and events are considered separately. Of course, any possible 

relationships between these two should be taken into account however 

(see section 2.2.6). 

 

Most public holidays fall in the first or last part of the (working) week, 

in particular those in the spring. (As their names imply, Easter Monday 

and Whit Monday are always on a Monday, and Ascension Day is 

always on a Thursday.) In these situations, many people leave for a 

long weekend, which can be expected to result in peaks in the traffic 

demand at the start and end of these long weekends. This is confirmed 
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by Bexelius and Kengen (1993), whose research shows that 

systematically recurring ‘peak days’ are mainly found near the  start and 

end of long weekends around public holidays in the spring (and thus 

certainly not necessarily on the public holidays themselves). The peak 

due to the leaving traffic typically starts in the afternoon of the last 

working day before the long weekend, and remains apparent until the 

next morning. The peak due to the returning traffic starts on the last 

day of the long weekend and ends on the next morning. 

 

For east-west orientated motorways in the Netherlands (especially the 

A12) also public holidays in Germany appear to have a clear influence 

on the traffic demand (Bexelius and Kengen, 1993). A special situation 

occurs when a German public holiday falls on a day that is a normal 

working day in the Netherlands. In this situation day-trippers from 

Germany intensify the Dutch commuting peaks. Especially Corpus 

Christi (on the Thursday ten days after Whit Monday) causes a very 

large traffic demand on the A12 motorway. 

 
. . . . . . . . . . . . . . . . . . . . . . . .  

 Intermezzo: systematic (or regular) variability vs. non-systematic 

(or irregular) variability 

 

Now that all sources of systematic variations in the traffic demand have 

been discussed (see Table 2.1), we can move on to the sources of non-

systematic (or irregular) variations, which together make up the 

remaining part of the total variation in the traffic demand. An 

interesting question, however, is what we can say now already about 

this remaining part of the variations, by studying the difference 

between the total variability of the traffic demand and the variability 

made up by the combination of all systematic variations. This question 

is dealt with in this intermezzo, again by considering results from 

previous research. 

 

Figure 2.9 and Figure 2.10 show the overall day-to-day spreading in 

the number of car trips over the period of a whole year (for the peak 

period and the off-peak period respectively). Clearly this spreading is 

rather substantial. For the peak periods the coefficient of variation 

amounts to about 0.17 and for the off-peak periods about 0.15. Hilbers 

et al (2004) performed a variance analysis in order to find out which 

part of this total day-to-day variation in the traffic demand could be 

explained by the factors ‘day of the week’, ‘vacation/non-vacation’, 

and ‘month of the year’. This part turned out to be rather limited: only 

23% and 22%, for the peak periods and off-peak periods respectively. 

Although the systematic influences of public holidays were not 

considered, this means that the largest part of the (considerable) 

variation between the working days seems to be non-systematic. 
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For a large set of measurement locations on the Dutch motorway 

network, De Vries and Praagman (1995) subtracted the systematic 

variations (i.e. the patterns over the day, over the days of the week, 

and over the weeks of the year) from the hourly traffic volumes that 

had been measured over the whole of 1993, and analyzed the residual 

variation. They found a relation between this residual variation and the 

average hourly traffic volume: for periods of the day with a larger 

average hourly traffic volume the residual variation appeared to be 

larger. However on weekend days this residual variation turned out to 

be relatively larger than on weekdays. That is, for the same average 

hourly traffic volume, on weekend days a larger residual variation was 

found. This is in agreement with the finding of Weijermars and Van 

Berkum (2007) that non-working days (being predominantly weekend 

days) show rather variable traffic demand patterns (see the earlier 

subsection on the systematic influence of the day of the week).  

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.9: Empirical distribution of 
the number of car trips in the peak 
periods  
(Source: Hilbers et al, 2004) 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.10: Empirical distribution of 
the number of car trips in the off-
peak periods  
(Source: Hilbers et al, 2004) 
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De Vries and Praagman found that the residual traffic volumes are 

correlated over time: if during a certain hour the traffic demand is 

larger than the average traffic demand for that hour (and for the 

concerning day of the week and week of the year), the traffic demand 

during the next hour is likely to be above average as well. Interestingly, 

they also found a substantial spatial correlation (correlation coefficients 

around 0.5) to exist between the residual traffic volumes on the various 

measurement locations that they considered, while these locations were 

not all closely together. (For measurement locations located very closely 

together, like two measurement locations on one and the same road, a 

strong correlation in traffic volumes of course would be rather obvious.) 

As De Vries and Praagman indicate, this suggests that aside of the 

patterns already eliminated (i.e. the patterns over the day, over the 

days of the week, and over the weeks of the year), there are still other 

common factors that result in correspondence between the traffic 

volume variations on the various measurement locations. One can think 

of weather conditions or other circumstances that affect the traffic 

volumes on a more or less network-wide basis. This kind of (network-

wide) non-systematic influence factors will be discussed in more detail 

below, as well as some non-systematic influence factors that affect the 

traffic volumes on a more local basis. 

. . . . . . . . . . . . . . . . . . . . . . . .  

 

5) Events 

 

For a limited number of days a year, events like exhibitions, shows, 

festivals and sporting events may attract a lot of traffic. These peaks in 

traffic demand however are not network wide (as all variations 

discussed above), but limited to the surroundings of the locations of the 

events. 

 

In fact, ‘events’ should not be understood too literally. After all, also 

recreation areas and tourist attractions might have peaks in traffic 

attraction on a certain number of days a year (for example on public 

holidays or on days with summery weather conditions). 

 

Meeuwissen et al (2004) constructed a ‘top 45’ of destination zones (in 

the Netherlands) in which events take place. In this top 45 the 

destination zones with events are ranked according to the average 

number of cars per hour that are attracted by the events. This number 

ranges from 46 vehicles per hour (rank 45) to 11,786 vehicles per hour 

(rank 1). The frequencies with which the events occur during ‘typical’ 

peak hours and ‘typical’ off-peak hours have been estimated as well 

(for workdays only). These widely varying frequencies range from 

0.40% (events covering only one weekday a year) to about 30% 

(destination zones with one or more tourist attractions and/or festivals). 

These are the frequencies estimated for the ‘typical’ off-peak hours. For 

the ‘typical’ peak hours the frequencies are assumed to be half of 

those. 
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6) Variability in weather conditions 

 

- Effects - 

 

Adverse weather conditions may affect the general level of traffic 

demand in two opposing ways. On the one hand, there might be a shift 

in the modal split from transportation modes that are characterized by 

a larger exposure to the weather (like the bicycle or the public 

transport13) to the car, increasing the traffic demand. For short distance 

trips this shift will be larger than for long distance trips. On the other 

hand, road users might refrain from making trips, resulting in a 

decrease of the traffic demand. This will especially be the case in 

situations in which the traffic safety might be reduced (e.g. if there is 

black ice on the roads), or if a traffic chaos might be expected (e.g. in 

case of heavy snowfall) 14 . However, also in case of rainy weather 

conditions traffic demand may be reduced, for example due to people 

abandoning outdoor activities. 

 

Besides effects on the modal split and the total number of trips, there 

might be effects on the destination choices, route choices, and 

departure time choices as well. However, these effects are more diffuse 

(i.e. increasing the traffic demand for some locations and moments in 

time, while decreasing it for other ones), so that they cannot really be 

characterized in general terms. In the following they are discussed in 

slightly more detail. 

 

The destination choices might be affected by a shift to activities that 

are less sensitive to the weather, insofar as these activities are 

performed at other locations. This might lead to the number of trips 

being increased on part of the origin-destination relations, while being 

decreased on another part of these relations. In general, these changes 

probably are rather limited however, except for typical leisure 

destinations like seaside resorts. In case of exceptionally adverse 

weather conditions, part of the travelers might opt for destinations 

closer to home. For many trips (like those between home and work) the 

destination obviously cannot be freely chosen however. 

 

In general, the direct effect of adverse weather conditions on route 

choices is likely to be rather limited. (In really extreme weather 

conditions drivers obviously may be more inclined to divert from their 

normal route than in more normal adverse weather conditions, because 

routes might have become impassable, or might be considered too 

unsafe under the circumstances at hand. This will reduce the traffic 

demand on these routes, while increasing the demand on other ones.) 

The indirect effect of adverse weather conditions on the route choices 

probably is larger. By affecting the traffic supply (see section 2.2.5), 

                                                   
13  In the case of public transport, this larger exposure is not related to the means of 

transportation themselves (as for the bicycle), but rather to the access and egress parts of the 

trip, which are at least partially to be covered on foot (or by bike). 

14 Actually, in these situations there also might be travelers switching from the car to the 

public transport, instead of vice versa. 
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adverse weather conditions affect the traffic conditions on the network 

(reflected in the levels of traffic congestion). Since road users might be 

informed on these ‘nonstandard’ traffic conditions (see also the 

intermezzo further below), this in turn may affect the route choices. Of 

course road users also might anticipate non-standard traffic conditions, 

based on the (forecasted) weather circumstances and their own 

experiences regarding the influence of such circumstances on the traffic 

conditions. It is difficult, though, to say something about the extent of 

these effects. Since the traffic conditions on alternative routes will often 

be affected by the adverse weather conditions as well, probably the 

route choice effects are limited. 

 

As far as the departure time choices are concerned, adverse weather 

conditions might have a direct effect by making travelers postponing 

outdoor activities, resulting in the associated trips to be postponed as 

well. Another reason why trips might be postponed (or brought 

forward) is that people want to avoid driving in bad weather 

conditions. However, in particular during the peak periods this effect is 

not likely to be very large, unless (forecasted) weather conditions are 

really extreme (significantly reducing the safety, or causing a traffic 

chaos). Just like the route choices, the departure time choices might be 

affected by the adverse weather conditions in an indirect way as well: 

in view of the effects of the adverse weather on the traffic conditions, 

travelers might decide to depart earlier or later than originally planned. 

This decision is not necessarily based on information on the actual 

traffic conditions, but might be motivated by past experiences as well. 

 

From a survey among commuters, conducted in Brussels, Khattak & De 

Palma (1997) found that road users have a higher propensity to change 

their departure time in response to adverse weather conditions, than to 

change their route. Possible explanations identified for this are that 

changing departure time might be easier, that the effect of changing 

departure time is better predictable, and that alternative routes are 

affected by adverse weather as well (so that route switching may not 

be beneficial). In another study it was found that commuters’ 

propensity to change departure time or route is much greater during 

the a.m. peak than during the p.m. peak (Hranac et al, 2006). A 

possible explanation for this might be that the urge to arrive at one’s  

destination in time is larger for the home-to-work trips than for the 

return trips. 

 

So far, this section has concentrated on adverse weather conditions. 

However, beautiful weather conditions (i.e. sunny skies and high 

temperatures) may make traffic demands deviate from their 

‘representative’ values as well. After all, recreational destinations will 

attract more visitors in such situations, resulting in extra traffic on the 

relations to these destinations. This effect is confirmed by a study 

conducted by Cools et al. (2008). They found relatively high 

correlations between the daily temperature maxima and the daily traffic 

intensities, in particular for a highway that is one of the access roads to 

the Belgian seashore (and consequently is typified by a large fraction of 
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leisure traffic). For this road, correlation with the sunshine duration is 

relatively high as well. 

 

Good weather conditions also might stimulate people to take the 

bicycle instead of the car (resulting in a decrease of the traffic demand), 

but this will only concern the shorter distance trips. For given car trips, 

route choices and departure time choices are not very likely to be 

significantly affected by summery weather conditions. 

 

In literature, the quantitative effects of weather conditions on traffic 

demand are generally studied in terms of changes in daily traffic 

volumes on some selected road sections. Chung et al. (2005) studied 

the effect of rain on traffic demand measured on the Tokyo 

Metropolitan Expressway, and found that on rainy days traffic demand 

was lower. For weekdays an average reduction in the daily number of 

trips of about 3 percent was found. For weekend days, a much larger 

reduction was found. Chung et al. note that this difference can easily 

be explained by a difference in travel purposes of the road users. On 

weekdays, most of the trips are work-related. These trips are typically 

not very flexible. On weekend days however there are less work-

related trips and more leisure-related trips. The latter are typically more 

flexible. Hanbali and Kuemmel found a similar difference in the 

reductions in hourly traffic volumes due to snowstorms15: on weekdays 

and especially during peak hours smaller reductions in hourly traffic 

volumes were observed (see Hranac et al, 2006). 

 

Hogema (1996) investigated the effects of rain on traffic volume for a 

location on the Dutch A16 motorway. However, no significant effect on 

the total daily traffic volume was found. Therefore, Hogema concluded 

that, apparently, rain does not cause a major modality shift towards the 

private car. Changnon (1996) studied the effects of rain on daily traffic 

volume using data from toll highways in the Chicago area (daily 

numbers of vehicles entering the toll roads at each of three 

interchanges). The results revealed that rain on weekdays had no 

measurable effect, while for rainy weekends a 9% decrease was found. 

 

Keay and Simmons (1995) analyzed data for two freeways in the 

Melbourne metropolitan area. In general, traffic volume appeared to be 

reduced on wet days. The larger the amount of rainfall, the larger this 

reduction tended to be. However, the effects were significant only for 

the winter and the spring (as well as for the year as a whole). For the 

winter period, a reduction in the daily volume of 1.35% was found, 

and for the spring period a reduction of 2.11%. Keay and Simmons also 

analyzed the effects separately for daytime and nighttime periods. For 

daytime rainfall reductions of 1.86% (winter) and 2.16% (spring) were 

obtained, while for nighttime rainfall reductions of 0.87% (winter) and 

2.91% (spring) were found.  

 

                                                   
15 Using traffic data from highways and freeways outside of urban areas in Illinois, Minnesota, 

New York, and Wisconsin (USA). 
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Cools et al. (2008) studied the effects of weather conditions on daily 

traffic intensities measured on four highway traffic count locations on 

the Belgium highway network. It was found that snowfall, rainfall and 

wind result in smaller traffic volumes, while high temperatures result in 

larger traffic volumes. The effects turned out to be rather different for 

different count locations.  Cools et al. indicate that these differences 

can be (partially) explained by differences in the travel purposes of the 

road users. As mentioned previously, leisure activities are typically more 

flexible than work activities. Consequently, on roads with a lot of 

leisure traffic, traffic volumes will react more strongly to the weather 

conditions than on roads with a lot of commuter traffic. (Analogous to 

the previously discussed finding that in time periods with a relatively 

large share of leisure traffic larger effects on the traffic volumes are 

observed than in time periods with a lot of commuter traffic.) 

 

- Frequencies of occurrence - 

 

Besides the effects of different weather conditions on the traffic 

demands, of course their frequencies should be addressed as well. In 

the Netherlands, precipitation occurs on average about 7% of the time 

(KNMI, 2002). Since precipitation usually lasts only for a limited part of 

the day, the average percentage of days on which precipitation occurs 

is much larger though. Figure 2.11 shows the average numbers of days 

with precipitation for the various months of the year (for different 

threshold values). In autumn and winter days with precipitation clearly 

occur more frequently than in spring and summer. It should be noted 

however that the average intensity of precipitation in summer is 

relatively high (due to the occurrence of heavy showers). In terms of 

the total amount of precipitation, this partially compensates for the 

shorter precipitation duration. 

 

 
 

In the Netherlands, the largest part of the precipitation is rain. Only 

about 3% of it is snow (Buishand and Velds, 1980). On average, on 25 

days a year snowfall is reported (see Figure 2.12). Mostly the amount 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.11: Average numbers of 
days with precipitation per month in 
the Netherlands  
(Based on data from KNMI, 2002) 
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of snow is limited however, and often it falls down in the form of sleet 

(i.e. snow that is melting away). On average, 19 days a year a (closed) 

snow cover is observed in the Netherlands. This number shows a large 

variation from year to year however (ranging from zero to a number 

much larger than 19) (KNMI, 2009b). Black ice occurs nearly every 

winter (November - mid March) one or more times, on average on 

about 2-5 days (KNMI, 2009b; Huiskamp, 2010). 

 

 
 

The frequency of occurrence of beautiful weather conditions is dealt 

with by considering the number of summery days. According to the 

definition used by the KNMI (the Dutch national meteorological 

institute) these are days with a maximum temperature higher than 

25°C. Figure 2.13 shows the average number of summery days for the 

different months of the year. 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.12: Average monthly 
numbers of days with snow  
(Based on data from KNMI, 2002) 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.13: Average numbers of 
summery days per month in the 
Netherlands  
(Based on data from KNMI, 2002) 
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7) Road works 

 

- Effects - 

 

The presence of road works might result in a reduction of the traffic 

demand for the road sections in question. This reduction can be 

effected in three ways: 

 
- If the road works have been announced, part of the road users 

will be informed on them in advanced. In view of possible traffic 
congestion problems, these road users might decide to avoid 
using the road sections in question during the peak periods (by 
opting for another route, departure time, transport mode or 
destination, or even canceling their trip altogether), resulting in a 
decrease of the traffic demand. 

The road authority might also go one step further than just 

providing information in order to prevent traffic chaos from 

occurring. Examples of more active forms of demand 

management are rewarding systems (systems in which road users 

are rewarded for avoiding the affected road sections during the 

peak periods) and temporary reductions on public transport fares. 

The most drastic demand reducing measure applied in practice 

(except for the complete closure of the road) is the closure of on- 

and off-ramps in the work zone.  

 
- If the road works last for several days (or even longer), road users 

might adapt their travel behavior based on their own 
experiences: if their travel times are increased due to the road 
works, they may switch to another route, departure time, 
transport mode or destination, or even decide to stay at home. 

 
- Based on traffic information received before departure or during 

the trip (possibly reporting on traffic congestion caused by the 
road works), travelers might decide to avoid using the road 
sections in question. (See also the intermezzo below.) 

 

Of course on other routes (or on the same route, but at other moments 

in time) just the opposite effect might occur: on these routes (or 

moments in time) traffic demand might be increased, due to diverting 

traffic.  

 

The magnitude of the demand effects of road works obviously will be 

dependent on the specific situation at hand (i.e. the remaining capacity, 

relative to the traffic demand under normal circumstances; the duration 

of the road works; the availability of alternative travel options; the 

traffic and demand management measures taken by the road authority; 

etc.). An example of the magnitude of the effects can be found in 

(AVV, 2002c), which discusses the traffic effects of a large-scale road 

maintenance project on a part of the beltway of Amsterdam (the A10-

West), carried out in the summer of 2001. Beforehand, it was expected 

that the road works would cause a traffic chaos. However, this traffic 

chaos did not materialize, largely due to the fact that the traffic volume 

on the A10-West was reduced by 38%. 
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This reduction in traffic demand can mainly be attributed to the closure 

of on- and off-ramps in the work zone, and the intensive information 

campaign. Especially local traffic (i.e. with origin and destination within 

the area around the A10-West) changed its behavior. The most 

important change that was observed in the travel behavior was the 

‘forced’ choice for another route. This resulted in increased traffic 

volumes on surrounding motorways, and particularly in a sharp increase 

of the traffic volumes on the surrounding on- and off-ramps and the 

urban network. On the surrounding motorways the usual congestion 

was not substantially increased, but on the urban network a lot more 

traffic congestion did occur. Only 10% of the road users switched to 

another transport mode (one half of which to the public transport, and 

the other half to the bike), in spite of the measures taken to stimulate 

this. It turned out that the road works did not result in less trips being 

made. (The total amount of trips was reduced by a few percent, but 

this reduction was due to the vacation period and public holidays.) 

 

A large part of the road users changed their departure time during the 

road works (in the morning peak 60% and in the evening peak 70%). 

However, the average changes were limited to a few minutes only. In 

the morning peak the average departure time was 5 minutes earlier, 

and in the evening peak 8 minutes. According to Scholtens (2001) the 

peak in the traffic demand was somewhat leveled off in the period of 

the road works. 

 

Another example of the magnitude of the effects of road works on the 

traffic demand can be found in (AVV, 2006), which gives an evaluation 

of the effectiveness of the mobility management measures that were 

taken to reduce the (peak period) traffic demand during the large-scale 

road maintenance project on another part of the motorway network 

around Amsterdam (the A4 and A10-South), that took place in the 

summer of 2006. These measures included the provision of a public 

transport card to people working in the region, and the implementation 

of an extensive media campaign. 

 

In this case the traffic demand in the morning peak was reduced by 8 

to 15%, and the traffic demand in the evening peak by 5 to 9%. The 

contribution of the mobility management measures to this reduction 

was substantial (5%). Among the commuters that had received a public 

transport card, the modal share of the public transport was increased 

from 23% to 43%. Among the cardholders that continued to use their 

car during the road works, a substantial shift in route choice was 

observed. The group of commuters that uses the A4 and/or A10-South 

four or more times a week was reduced by a quarter in the period of 

the road works. The road works and/or provision of the public 

transport card did not result in unambiguous changes in the departure 

times of the travelers.   

 

In (Scholtens, 2001) it is stated that a rule of thumb for road works on 

major roads is that the traffic volume is reduced by half. One half of 

this reduction is due to road users diverting to parallel roads. Usually it 

remains unclear where the other half went. 
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Note that all figures mentioned in the above are related to large-scale 

road works. In case of smaller road works (with a shorter duration 

and/or a smaller effect on the available capacity) obviously the demand 

effects will be more limited. In case of emergency repairs, road users 

will not be able to anticipate the road works (by adjusting their travel 

choices), unless they receive some traffic information on these before 

departure or during the trip. 

 

- Frequency of occurrence - 

 

Without information on their frequency of occurrence (and duration), 

the effects of road works on the traffic demand of course do not say 

much about the actual impact on the traffic conditions. For these 

aspects (i.e. frequency of occurrence and duration), the reader is 

referred to the subsection on the effects of road works on the traffic 

supply conditions (section 2.2.5). 

 
. . . . . . . . . . . . . . . . . . . . . . . .  

 Intermezzo: the influence of traffic information and past travel 

experiences 

 

Although they are not really sources of variability themselves (as 

explained in section 2.2.1), traffic information and past travel 

experiences certainly play a role in the demand effects of ‘real’ sources 

of variability, as was already shortly mentioned in the discussions on 

the demand effects of varying weather conditions and road works. 

Therefore, in this intermezzo these factors are considered in some more 

detail. 

 

First of all the influence of traffic information is considered. Based on 

information regarding the actual traffic conditions (obtained from for 

example the internet, the radio, a real-time navigation system or a 

roadside variable message sign), travelers can adapt their travel choices 

to these conditions, which will affect the traffic demand. In the 

Netherlands, about 45% of the users of the main road network 

regularly use traffic information before departing. During the trip this 

percentage even amounts to about 55% (AVV, 2006b). Of course, the 

use of traffic information in itself certainly does not necessarily mean 

that one adapts one’s travel choices. This will only be the case if the 

traffic information gives sufficient reason for this (that is, if the actual 

traffic conditions differ sufficiently from those initially expected). 

Furthermore, the purpose of using traffic information might also be to 

just reduce one’s uncertainty regarding the traffic conditions that one 

will face, rather than enabling a reconsideration of one’s travel choices.  

 

It should be noted that in subsection 2.3.3 the effect of traffic 

information is shortly returned to, insofar as the influence on route 

choice is concerned. That subsection deals with the route choice effect 

of traffic congestion (one of the network effects of traffic congestion, 

which are discussed in section 2.3), in which traffic information 

obviously plays an important role. 
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Besides traffic information, road users’ past travel experiences may 

make them adapt their travel choices as well (again affecting the traffic 

demand). If a road user experiences an above average travel time on a 

certain day, he might for instance decide to take another route on the 

next day. In view of the fact that in travel behavior habit formation 

plays an important role, it is doubtful however whether this process is 

really significant. If the experienced traffic conditions have a specific 

cause though, adjustments in the travel behavior are much more likely. 

For example, if a road user experiences traffic congestion due to a 

newly started road maintenance project, it is not unlikely at all that this 

road user will adapt his habitual travel behavior, until the road works 

have finished. 

 

As illustrated in Figure 2.14, the effects of traffic information and past 

travel experiences in fact form a feedback mechanism from the 

variability in the traffic conditions to the variations in traffic demand (at 

two different timescales). Due to this mechanism, the final effect of the 

sources of demand variability actually may consist of two components: 

a direct component and an indirect one.  

 

 
. . . . . . . . . . . . . . . . . . . . . . . .  

 

8) Strike actions 

 

On days with large-scale strike actions, traffic demands in the peak 

periods might be substantial lower (due to a reduction in the amount of 

commuters). The size of the effect on the demand is strongly 

dependent on the scale of the strike actions and the professional 

groups involved. Furthermore, the size of the effect may vary from 

region to region. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.14: The influence of traffic 
information and past travel 
experiences 
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A special situation occurs if the strike is in public transport. In this case, 

traffic demands are likely to be higher instead of lower, because of 

travelers switching from a public transport mode to the car.  

 

The frequency of occurrence of large-scale strike actions however is 

rather low. Therefore, they cannot really be considered a source of 

daily variability in traffic congestion. For this reason, the influence of 

strike actions will not be given any further consideration in this thesis.  

 

9) Emergencies 

 

(Imminent) emergencies or disasters, like floods, terrorist attacks or 

chemical accidents, might lead to large streams of refugees. In 

situations in which an evacuation plan is put into effect, this process 

will take place in a more orderly fashion than in other situations. In 

both cases however traffic demands will be very large. In the rest of 

this thesis no further consideration will be given to this kind of 

situations. The focus of this research project after all is on daily traffic 

congestion. Because of the very small frequencies/probabilities of 

occurrence, traffic congestion due to emergencies falls outside this 

scope. 

 

10) Other variations in human travel behavior 

 

The factors discussed above do not fully explain the variations in traffic 

demand. Ultimately the variations in traffic demand are to a large 

extent the result of variations in peoples’ activity patterns. These 

variations typically cannot completely be explained by a limited set of 

factors (no matter how large this set is chosen). As a result, the 

variations in traffic demand cannot be fully explained either.  

 

From some literature referred to in (Weijermars, 2007) it can be 

concluded that, relatively speaking, the remaining (i.e. unexplained) 

variation is probably not very large:  

- in a study on the relation between weather conditions and daily 
traffic volumes, it turned out to be possible to explain 95% of 
the variation in daily traffic volumes on two Australian freeways 
using a linear regression model incorporating trend, day of the 
week, holidays, and weather effects. 

- in a study on the classification of traffic data time series, it was 
found that 75% of the variation in hourly traffic volumes in 
Vienna could be explained by differences between 
measurement locations, time of day, type of day, season, and 
weather conditions, while the residual 25% of the variation can 
be partly attributed to road works. 
 

As was already noted before, various studies show that the (day-to-

day) demand variability is larger for weekend days than for weekdays. 

This larger variability can be explained by the fact that people have less 

fixed activity patterns on weekend days. Due to the larger flexibility in 

the activity patterns, there is also a larger sensitivity to variations in the 

weather conditions, as discussed before. 
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While the unexplained variation from a relative perspective may be 

limited, from an absolute perspective it might still be an important 

factor however. This is due to the fact that the relationship between 

traffic demand and traffic congestion (expressed in for instance travel 

times) is not linear. A small difference in traffic demand may just make 

the difference between the traffic remaining free flowing and the traffic 

flow breaking down to a congested state (resulting in a queue that 

might continue to grow for some time). 

2.2.5 Sources of temporal fluctuations in the supply 

 

1) Adverse weather conditions 

 

- Effects - 

 

Adverse weather conditions (rain, snow, black ice, fog) may seriously 

affect the traffic supply, by reducing driving speeds and road capacity. 

Snow and black ice can result in a slippery road surface. To a more 

limited extent, rainy weather conditions can have a similar effect. 

Furthermore, fog and precipitation (especially snow) can significantly 

reduce visibility. Low sun can affect the visibility as well. Drivers deal 

with these effects by reducing their speeds and keeping larger 

headways. This results in road capacities being lower in this kind of 

circumstances. The capacity might also be reduced due to a reduction 

of the number of available lanes: snow, black ice or flooding may make 

one or more lanes (or even an entire road section) impassable. 

 

On roads with a rush-hour lane (i.e. an extra lane which is only used 

during periods with a high traffic demand), weather conditions might 

also affect the capacity by prohibiting the opening of this additional 

lane. If visibility is bad (like during fog), it cannot be verified – using the 

cameras installed for this purpose – whether there are no obstacles on 

this lane. As a consequence the rush-hour lane has to remain closed for 

traffic, resulting in the capacity to be lower than usual for the traffic 

demand level at hand. Also in situations with snow or black ice on the 

road surface it might be necessary to keep the rush-hour lane closed.  

 

Of course the actual size of the reductions in speed and capacity is 

dependent on the type of weather conditions and their intensity. In 

addition, it might be dependent on the type of road surface. The more 

porous the asphalt is, the better it drains. This results in a reduction of 

splash and spray (improving visibility) and a reduction of the road 

slipperiness (reducing the risk of hydroplaning). This might result in the 

speed and capacity reductions during rainy weather to be smaller.  

 

Since weather conditions might have various spatial scales (ranging 

from a large rain belt to a local shower) their effects on the traffic 

supply can be either network-wide or local. 
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There is quite a lot of literature on the effects of weather conditions on 

speed and capacity, based on empirical investigations. The results of 

these studies are difficult to compare however, since: 

- The investigations are performed for different regions across the 
world. Consequently there might very well be differences in the 
characteristics of the adverse weather conditions and the road 
users’ response to these conditions. Here factors like the 
familiarity with the weather conditions, the drainage quality of 
the road surface, and the quality of snow clearing activities play a 
role (Hranac et al, 2006). 

- There are methodological differences between the various 
studies, like differences in the time interval that is chosen for the 
analysis and differences in the classification of the weather 
conditions (i.e. the distinction between ‘good’ and ‘bad’ weather 
conditions and a possible further breakdown of the latter).  

 

Furthermore, not all results are very reliable/accurate, due to: 

- the use of rather limited data sets (i.e. data for a limited number 
of time intervals and/or a limited number of locations), 

- the use of weather data measured at a location at a quite a 
distance from the road (possibly resulting in errors in the weather 
conditions used in the analyses), and 

- the use of too long time intervals (for which the weather 
conditions cannot accurately be characterized anymore by single 
values for the time interval as a whole16) 

 

Quantitative effects of rain 

 

On the basis of other literature, in (AVV, 2002) it is proposed to use 

the following reduction percentages for the (free flow) capacity during 

rainy weather (as compared with the capacity under ‘ideal’ conditions): 

8% in case of closed asphalt, and 5% in case of very porous asphalt. 

More recently, Brilon et al. (2005) derived the capacity distribution for 

a large set of German freeway sections (using empirical data), 

separately for dry road surface conditions and wet road surface 

conditions. For all sections a very clear reduction in capacity of around 

11% was found for wet conditions (as compared with the capacity 

under dry conditions). 

 

Smith et al (2003) made a distinction between light rain (0.25 to 6.35 

mm/h) and heavy rain (> 6.35 mm/h). Based on empirical data for two 

freeway links in Virginia (United States), they found capacity reduction 

factors of 4% to 10% for light rain and 25% to 30% for heavy rain. 

Agarwal et al (2005) conducted an extensive study on the freeway 

network of Minneapolis and St. Paul (including several interstates and 

trunk highways built to freeway design standards). For light rain (0.25 

to 6.35 mm/h) they found more or less the same result as Smith et al: a 

reduction of 5% to 10%. For heavy rain however they found a smaller 

reduction than Smith et al: 10% to 17%. Hranac et al (2006) 

                                                   
16 Consider for example the fact that a short but very heavy shower and a prolonged rainfall 

with a modest precipitation rate might both yield the same precipitation measurement over a 

time interval of one hour, which implies that a time interval of one hour is in fact too long.  
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conducted an even more extensive study on freeways (or highways) in 

three major metropolitan areas in the United States (Seattle, Baltimore, 

and Minneapolis–St. Paul). They found a constant capacity reduction of 

10% to 11% for rainy weather, independent of the rainfall rate (within 

the range of 0 to 17 mm/h). Chung et al (2005) analyzed the impact of 

rainfall of various intensities on the capacity of a number of sections of 

the Tokyo Metropolitan Expressway. They found a capacity reduction 

of 4% to 7% for light rain (1 mm/h), increasing up to 8% to 14% for 

heavy rain (10-20 mm/h). 

 

For the (uncongested) speed reductions due to wet road conditions, 

Brilon and Ponzlet (1996) found values of about 9.5 km/h on two-lane 

roadways and 12 km/h on three-lane roadways17. It should be noted 

however that these values were established for a set of German 

autobahns without a speed limit. In situations with a speed limit the 

reductions can be expected to be smaller. Nevertheless, Hogema (1996) 

found a rather similar result for a motorway with a speed limit (the 

Dutch A16): in rainy weather the mean speed turned out to be 11 

km/h lower than in dry conditions18. 

 

In the same research project as referred to above, Smith et al (2003) 

found reductions of 5 to 6 km/h (corresponding to 5% to 6.5%) for 

both light and heavy rain. Argawal et al (2005) found reductions of the 

same order of magnitude. Hranac et al (2006) made a distinction 

between the effect on the free speed and the effect on the speed-at-

capacity. The effects were found to generally increase with rain 

intensity. For the free speed the reduction factor was found to increase 

from 2%-3.6% for light rain (< 0.1 mm/h) up to 6%-9% at a rain 

intensity of approximately 16 mm/h. For the speed-at-capacity the 

reduction factor was found to increase from 8%-10% for light rain up 

to 8%-14% at a rain intensity of approximately 16 mm/h. In their 

investigation of the weather effects on the performance of the Tokyo 

Metropolitan Expressway, Chung et al (2005) calculated the reduction 

in the median free flow speed (for flow rates ≤ 500 veh/h/lane) for 

various rainfall rates. This resulted in a reduction factor of 4.5% for a 

rainfall rate of 0-1 mm/h, increasing up to 8.2% for a rainfall rate of 5-

10 mm/h (relative to a median free flow speed of 77.7 km/h under dry 

conditions). 

 

Quantitative effects of snow 

 

Obviously, snow can have very detrimental effects on the 

(uncongested) speeds and the capacity. The magnitude of the effects, 

however, will strongly depend on the snowfall rate, on whether it falls 

in the form of sleet or in the form of ‘dry’ snow, and on the extent to 

                                                   
17  Using these reductions in (uncongested) speeds, Brilon and Ponzlet also estimated the 

reductions in capacity. For two-lane roadways a capacity reduction of 350 veh/h was found, 

and for three-lane roadways a capacity reduction of more than 500 veh/h, both 

corresponding to roughly 10% of the capacity under dry conditions. 

18 It should be noted that in his analysis, Hogema only considered situations with relatively low 

traffic volumes (well below capacity). 
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which the road authority succeeds in keeping the road clear from a 

snow cover. The Highway Capacity Manual (TRB, 2000) points at the 

fact that if snow-clearing operations cannot keep the road reasonably 

clear, the snow accumulation will obscure the lane markings. According 

to the HCM, observation suggests that drivers often seek not only 

larger headways in that situation, but also larger lateral clearances. This 

results in a three-lane roadway being used as if it had only two (widely 

separated) lanes. Obviously, this effect alone already results in a 

significant reduction of the capacity. 

 

Table 2.6 shows the reductions in capacity and uncongested speeds for 

various snowfall rates, as found by Agarwal et al (2005). Larger 

snowfall rates clearly have a larger impact. Remarkably, Hranac et al 

(2006) found that the capacity reduction is not dependent on the snow 

intensity 19 . They found a value of 12% to 20% for this capacity 

reduction. In contrast to this capacity reduction, the reductions in speed 

were found to typically increase with snow intensity. For both the free 

speed and the speed-at-capacity the reduction factor was found to 

range from 5%-16% (light snow: 0.1 mm/h  
20) up to 5%-19% (at a 

snow intensity of approximately 3 mm/h  
20). As reflected by the large 

bandwidths, the results for the different metropolitan areas were rather 

different however. 

 

Snowfall rate (mm/h) Capacity reduction Uncongested speed reduction21 

0 – 1.3 3%-5% 3%-5% 

1.5 – 12.7 6%-13% 7%-10% 

> 12.7 19%-27% 11%-15% 

 

Quantitative effects of other weather conditions 

 

Agarwal et al (2005) also considered the effects of temperature, wind 

(in the opposite direction of travel) and reduced visibility (due to fog 

events) on capacity and (uncongested) operating speeds. No significant 

effects were found, however, for wind and temperature (except for 

temperatures below -20°C). For reduced visibility conditions 

(corresponding to a visibility below one mile22) a capacity reduction of 

10% to 12% was found. The (uncongested) operating speeds were 

found to be reduced by about 7% for visibilities between 0.4 and 1.6 

km, and by about 12% for visibilities below 0.4 km. 

 

It is conceivable that low sun conditions can affect the capacity and 

operating speeds as well. After all, depending on the orientation of the 

road, the visibility can be seriously reduced if the sun is low in the sky. 

Nevertheless, there is little literature on the influence of this 

phenomenon. 

                                                   
19  This however might be due to the fact that in their analyses, Hranac et al. considered 

visibility as a separate factor, concurrently with the snowfall rate (or rainfall rate). Maximum 

capacity reductions in the range of 10% were observed for situations with reduced visibility.   

20 expressed in the liquid-equivalent precipitation rate 

21 average reference speed: 107 km/h 

22 equivalent to 1.6 km 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.6: Reductions in capacity and 
uncongested speeds for various 
snowfall rates  
(Source: Agarwal et al, 2005) 
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Accounting for the quantitative effects in the fundamental diagram  

 

Based on the quantitative impacts on capacity and speeds (and some 

additional information, such as the observation that the jam density is 

not affected by the weather conditions: see Hranac et al , 2006) one can 

construct a fundamental diagram for specific adverse weather 

conditions. In Figure 2.15 two examples of this are shown (relating to 

the Minneapolis–St. Paul area, USA), taken from (Hranac et al, 2006). 

In the left half of the picture a comparison of the fundamental 

diagrams for clear weather conditions and the ‘worst’ rainy conditions 

(i.e. for the highest rainfall rate considered by Hranac et al.) is shown. 

Similarly, in the right half of the picture the fundamental diagram for 

clear weather conditions is compared with the one for the ‘worst’ 

snowy conditions.  

 

 
 

- Frequencies of occurrence - 

 

Without data on the frequencies of occurrence of the bad weather 

conditions, the reductions in speed and capacity in these bad weather 

conditions of course do not say much about their actual impact on the 

traffic conditions. However, in the discussion on the demand effects of 

variations in weather conditions (see section 2.2.4) already a lot of 

information has been given on these frequencies, which will not be 

repeated here. Some additional information relating to precipitation 

rates is given however, because of their influence on the magnitude of 

the effects on capacity and (uncongested) speeds. Also, some 

information on the frequency of occurrence of fog is added. 

 

In the Netherlands, the average yearly amount of precipitation is nearly 

800 mm. Given the fact that, on average, it rains about 7% of the time, 

one can compute that the average precipitation rate amounts to about 

1.3 mm/h. Considering time intervals of 15 minutes, on average 10 

times a year a precipitation rate of more than 12 mm/h occurs (KNMI, 

2009d). If time intervals of 60 minutes are considered, the precipitation 

rate that (on average) is exceeded 10 times a year equals 5 mm/h.  

 

There are some differences in rainfall between the various periods of 

the day, in particular in the inland parts of the country. During the late 

afternoon and the early evening the amount of precipitation might be 

up to several tens of percents higher than during the morning or night, 

in these parts of the country (see Buishand and Velds, 1980). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.15: Comparison of the 
fundamental diagram for clear 
weather conditions with its 
counterpart for rainy weather (left) or 
snowy weather (right) 
(Source: Hranac et al, 2006) 
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The probability of fog is largest in the period just before sunrise (KNMI, 

2008). After the sunrise the probability gradually decreases, and during 

the nighttime it gradually increases again. Over a whole year, there are 

about 40 ‘fog days’ in the Netherlands (KNMI, 2009a). This however 

does not mean that traffic is impeded on all of these days. A day is 

considered to be a ‘fog day’ already if in one of the 24 hours of this 

day visibility is below 1 km. Traffic is only hindered if visibility is 

reduced to below 400 m. Since there are about 15 days in a year on 

which a visibility below 200 m is reported, and about 35 days on which 

a visibility below 500 m is registered (see KNMI, 2009), the yearly 

number of days with a visibility below 400 m will be somewhere in 

between. In the Netherlands, the frequency of fog is largest in the 

period between October and January (KNMI, 2008). In the spring and 

summer there are fewer fog days. Furthermore, the fog dissolves faster 

in the summer. In the autumn and winter sometimes the fog remains all 

day. 

 

2) Luminance 

 

- Effects - 

 

Besides the weather conditions, luminance conditions affect the traffic 

supply as well. Darkness may result in a (limited) reduction of driving 

speeds and capacity, as compared with the situation during daylight. 

AVV (2002) states that in research studies an average capacity 

reduction of 5% is found (in otherwise ideal circumstances). It should 

be noted, however, that this reduction is strongly dependent on 

location. In case of street lighting the decrease in capacity might be 

lower. 

 

More recently, in the same study as referred to earlier, Brilon et al. 

(2005) found contrasting results. They clearly found that darkness does 

not shift the capacity distribution of German freeway sections. On the 

other hand, Chung et al (2006) found the capacity during daybreak 

(i.e. in poor natural lighting conditions) to be 12.8% lower than during 

daylight. This effect cannot be attributed to drivers being blinded by 

the sun in the daybreak period, since they were not facing the sun. This 

result was obtained from data from only one location however, making 

it impossible to draw firm conclusions. Moreover this was a location on 

the Tokyo Metropolitan Expressway. In all likelihood the situation on 

German autobahns is more representative for the situation on the 

Dutch motorways than the situation on a Japanese expressway. 

 

As far as the effect on the uncongested speeds is concerned, Brilon and 

Ponzlet (1996) found that darkness causes an average reduction of 

about 5 km/h. It should be noted however that this result was obtained 

for German autobahns without a speed limit. Obviously, in situations 

with a speed limit the reduction could be smaller.  
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- Frequency of occurrence - 

 

Based on the sunset and sunrise times for all days of the year, 

Meeuwissen et al (2004) calculated the relative frequencies of darkness 

for the peak periods and the off-peak periods in the Netherlands. For 

the peak periods (7:00 - 9:00 plus 16:00 - 18:00) a value of 22% was 

found, and for the off-peak periods (6:00 - 7:00, 9:00 - 16:00, and 

18:00 - 24:00) a value of 35%. 

 

3) Road works 

 

- Effects - 

 

Road works create variability in the traffic supply characteristics in two 

ways: 
- During road works the speed limit is temporarily lowered over the 

length of the work zone. Usually the speed limit is set at 70 
km/h. Sometimes speed limits of 90 km/h or 50 km/h are 
imposed, however. 

- During road works, the capacity of the road section in question is 
reduced. This can be due to a reduction in the number of 
available lanes and a less efficient use of the (remaining) lanes. 
This less efficient use of the (remaining) lanes, typically reducing 
their capacity by roughly 20 to 40%, might be due to a reduction 
in the width of the lanes, shifts in the course of the roadway, the 
lowered speed limit (if lowered to 50 or 70 km/h), and the 
distracting effect of the ongoing activities. As a result of this 
effect, the capacity is reduced even when only the hard shoulder 
is closed.  

 

Obviously, road works only affect the traffic supply characteristics on 

the road sections on which the road works take place. This is in contrast 

with the earlier discussed effects of darkness and adverse weather 

conditions, which are (or might be) network-wide. The road works 

might be limited to one single location, or cover an entire road stretch. 

The speed effect will only affect road users’ travel times to a significant 

degree in the latter case. The capacity effect however might have very 

detrimental consequences already if the road works are limited to only 

one single location. 

 

A general value for the capacity effect of road works cannot be given. 

This is due to the fact that work zones are found in many different 

configurations, ranging from a simple closure of the hard shoulder to 

settings in which traffic in one of both directions is diverted over the 

roadway in the opposite direction. Occasionally also full road closures 

occur (mostly during weekends or during the night). The capacity 

reduction is not only dependent on the configuration of the work zone 

though. Other factors involved are the width of the (remaining) lanes, 

the speed limit, the duration of the road works (because of the process 

of habituation), and the type and intensity of the activities in the work 

zone (in connection with attention distraction). In (AVV, 2002) for a 

large set of lane configurations and width reductions, values for the 

reduced capacities are given, measured or estimated for work zones on 
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Dutch motorways. In combination with a database containing 

information on all road works on the Dutch motorway network (insofar 

as these have been registered), it would in principle be possible to 

construct an approximate 23  relative frequency distribution of the 

capacity effects of motorway road works. 

 

- Frequency of occurrence - 

 

The Dutch road authority strives to minimize the impacts of road works 

on the traffic conditions. Therefore the vast majority of the road works 

are carried out during the evening and night periods. Only a very 

limited part is executed during the peak periods, and even then mostly 

on days or road stretches on which the traffic demands are not very 

high (Rand Europe, 2004). However, it is of course not always possible 

to avoid carrying out road works during busy periods or on busy 

locations. Some types of (major) road works simply take a rather long 

period, which almost inevitably will contain certain periods with high 

levels of traffic demand as well. Furthermore, sometimes emergency 

repairs need to be carried out, which cannot wait until the traffic 

demand is lower. 

 

Figure 2.16 shows the frequency distribution of the starting times of all 

reported road works on the Dutch main road network in 2002. In 

Figure 2.17, the frequency distribution of their duration is shown. If 

information on the starting time of the road works is combined with 

information on their duration, a histogram can be constructed of the 

numbers of road works that have been going on during the different 

hours of the day. This histogram is shown in Figure 2.18. It should be 

noted that the road works that took longer than 24 hours are excluded 

from the histogram. Expressed in numbers, these road works form only 

a few percent of the total amount of road works. Because of their long 

durations, they form a rather large part of the total duration of road 

works though. Note that including these road works in the histogram 

would not alter the absolute differences in the histogram, however. For 

all time intervals (i.e. hours of the day) the frequency would be raised 

by about the same amount (which is roughly estimated at around 

10,000). 

 

Besides the start time and duration of the road works, of course also 

the length of the work zones is of importance. Information on the 

length of work zones can be found in the database mentioned above. 

Probably there is a rough relationship between the length and the 

duration of road works. On average, a longer length will correspond to 

a longer duration. 

 

                                                   
23 Note that this distribution would only be an approximation of the ‘true’ distribution, since it 

would not be possible to fully account for the influences of the duration of the road works, 

the speed limit, and the intensity and type of the ongoing activities. Moreover, the 

unregistered part of the road works might introduce a bias in the calculated distribution.  
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24 Only including the road works that started between Monday 0:00 hours and Friday 19:00 

hours, and excluding the road works that took longer than 24 hours. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.16: Frequency distribution 
of the starting time of the road works 
reported over 2002 
(Source: AVV, 2003) 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.17: Frequency distribution 
of the duration of the road works 
reported over 2002 
(Source: AVV, 2003) 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.18: Numbers of road works 
reported over 2002 that have been 
going on during the different hours 
of the day 
(Approximation, based on data from 
AVV, 2003)24 
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In Figure 2.19 the distribution of the reported road works over the 

months of the year is shown. Apparently, both in the summer period 

and in the winter period there is a dip in the number of road works 

carried out. The dip in the summer period probably is related to the 

vacation period. The dip in the winter period might be related to the 

weather conditions. In the autumn the number of road works appears 

to be relatively large. In 2001 the monthly numbers of road works were 

highest in the autumn as well, although the difference with the other 

months was smaller (AVV, 2002b). 

 

 
 

4) Incidents 

  

- Definition - 

 

In this thesis incidents are defined as unpredictable short-term events 

(with durations ranging from a few minutes to a few hours) that affect 

traffic operations by strongly reducing the available capacity and/or the 

(uncongested) traffic speed. There a many different types of incidents: 

accidents, vehicle breakdowns, cargo spills, technical malfunctioning of 

roadside equipment (like traffic control devices, bridges, and tunnel 

safety systems), oil spills, roadside fires, tunnel closures triggered by 

vehicles exceeding the height restriction, events alongside the road that 

distract drivers’ attention from the driving task, etc. Please note the 

difference between incidents and accidents. Accidents are just one of 

many categories of incidents. 

 

Incidents occur such frequently in practice that they certainly can be 

considered to be contributing to daily traffic congestion. On routes of 

30 kilometers or more, on average once every five days the travel time 

is influenced by an incident (Transpute, 2003). In 2000, around 21% of 

the total number of lost vehicle hours was caused by accidents 

(Kouwenhoven et al, 2006). 

 

- Effects - 

 

Incidents affect the traffic operations by locally reducing the available 

capacity and/or reducing the traffic speed, during a certain amount of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.19: Number of reported road 
works per month in 2002  
(Source: AVV, 2003) 
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time. Since the reduction in traffic speed occurs only locally (not 

counting the speed reductions due to the emergence of traffic 

congestion, caused by the reduction in capacity), its effect on (origin-

destination) travel times is very limited. The reduction of the available 

capacity might have a much larger effect. Therefore, this reduction in 

capacity is discussed in more detail below. 

 

Obviously, incidents can physically affect the available capacity by 

blocking one or more of the lanes (or even the complete roadway). 

However, the capacity is reduced as well due to the (remaining) lanes 

being used less efficiently during incident situations. This is the result of 

the driving behavior being different than during normal (i.e. non-

incident) conditions. Probably to a large extent this difference in driving 

behavior can be attributed to the fact that incidents divert drivers’ 

attention away from the driving task. This results in drivers reducing 

speeds and increasing headways, by which the capacity is reduced. 

 

Incidents do not only affect the capacity of the roadway in question. 

The capacity of the roadway in the opposite direction is affected as 

well. Since there is no physical capacity reduction in this direction, in 

this case the capacity reduction can be fully attributed to diverted 

attention (i.e. drivers trying to see what is going on). 

 

On both roadways most likely both the free flow capacity and the 

queue discharge rate are affected. Knoop (2009) states that to the best 

of his knowledge there has been no research into the effect on the free 

flow capacity. The reduction in queue discharge rate, however, has 

been investigated in several studies. 

 

In the US ‘Traffic Incident Management Handbook’ (PB Farradyne, 

2000) a table is included that shows the percentage remaining capacity 

under a variety of incident conditions (ranging from shoulder 

disablement to three lanes blocked) for freeways with various numbers 

of lanes (Table 2.7). It should be noted, however, that this table is 

based on a more encompassing definition of ‘incidents’. Here also 

unplanned work zone activities are considered to be incidents, while in 

this thesis these are considered separately. For unplanned work zone 

activities different capacity reduction factors may apply than for other 

incidents. Furthermore, it should be noted that the capacity reduction 

factors in the Netherlands might have different values than those found 

in the United States. The table clearly illustrates that an incident 

reduces the roadway capacity by an amount far greater than the 

physical reduction in the number of available lanes.  

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.7: Fraction of freeway 
capacity available under incident 
conditions  
(Source: PB Farradyne, 2000) 
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Based on empirical data, Knoop (2009) determined the reduction in 

queue discharge rate for 90 incidents on a few Dutch motorway 

stretches (all of them with 3 lanes in each direction). The analys is was 

limited to accidents that resulted in one or more (driving) lanes being 

closed and vehicle break downs that resulted in the hard shoulder being 

occupied. For each incident, Knoop calculated the ratio of the queue 

discharge rate during that incident and the queue discharge rate at the 

same location in normal conditions (referred to as the ‘capacity factor’). 

Subsequently, for all four incident types the mean and the standard 

deviation of this ratio were calculated. Table 2.8 shows the results that 

were obtained. As explained before, the reductions in queue discharge 

rate are the combined result of a reduction in the number of available 

lanes and a less efficient use of the remaining lanes. Factors expressing 

this reduced efficiency are included in the table as well. 

 

Incident type Broken down 
vehicle on 

hard 
shoulder 

1 out of 3 
lanes blocked 

2 out of 3 
lanes blocked 

Incident on 
roadway in 

opposite 
direction 

Mean value of the 
capacity factor 

(between brackets: 
standard deviation) 

0.72 (0.09) 0.36 (0.14) 0.18 (0.12) 0.69 (0.08) 

Efficiency use of 
remaining lanes 0.72 0.54 0.54 0.69 

 

The reduction in queue discharge capacity in situations with an incident 

on the roadway in the opposite direction is remarkably high (-31%). 

This reduction is entirely due to a change in driving behavior, since 

there are no lanes blocked on the roadway in question. The same 

applies to the capacity reduction in situations with a vehicle on the hard 

shoulder (-28%). It is remarkable that for both situations in which one 

or two lanes are blocked the same value is found for the efficiency of 

the use of the remaining lanes (54%). According to Knoop (2009) this 

means that both situations lead to the same behavioral effects.  

 

When comparing these values with those found in the United States 

(Table 2.7), the capacity reductions found in the Netherlands turn out 

to be relatively high, except for situations in which two of the three 

lanes are blocked. This difference might be due to differences in the 

definition used for ‘incidents’, or due to behavioral differences between 

Dutch drivers and drivers in the United States. 

 

A special situation is found for roads with a rush-hour lane (i.e. a hard 

shoulder which is used as additional lane during peak hour conditions). 

For such roads, incidents on the hard shoulder actually might also have 

a physical effect on the capacity (while they normally would have an 

efficiency effect only), by prohibiting the opening of the rush-hour 

lane. If the hard shoulder lane is blocked, it cannot be opened for 

traffic, resulting in the capacity to be lower than usual for the traffic 

demand level at hand. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.8: Remaining capacities 
under incident conditions  
(Data from Knoop, 2009) 
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Besides the magnitude of the capacity reduction, the incident duration 

is a very important factor for the impact on the traffic conditions as 

well. In Figure 2.20 the empirical probability distribution of the duration 

of incidents on the Dutch freeway network is shown.  

 

 
 

Fifty percent of all incidents are cleared in 37 minutes or less. However, 

the distribution is very skewed: it has a very long tail to the right. This 

means that some of the incidents have a very long duration. About 8% 

of the incidents even take longer than 4 hours! In view of the fact that 

an incident causes a total delay that is at least proportional to the 

square of its duration, this characteristic is rather detrimental for the 

performance of the traffic system. 

 

- Frequency of occurrence - 

 

As far as the incident frequency is concerned, Immers et al. (2005) refer 

to a study conducted in the United States, in which an incident 

probability of 0.171 incidents per 100,000 car kilometers was found. 

For a route with a length of 30 km and a daily traffic volume of 40,000 

vehicles, this corresponds to a daily incident probability (i.e. the 

probability of one or more incidents occurring on an arbitrary day) of: 

1-(1-0.171/100,000)40,000=0.07 (assuming independence between the 

individual vehicle kilometers). 

 

Most incidents concern vehicle breakdowns, usually only blocking the 

hard shoulder. Also in case of accidents the drivers involved often try to 

move to the side of the road, resulting in only the hard shoulder being 

blocked. However, in case of an accident the probability of a lane 

blocking is larger than in case of a vehicle breakdown. Figure 2.21 

shows an overview of the relative frequencies of occurrence of these 

different types of incidents, taken from the US ‘Traffic Incident 

Management Handbook’ (PB Farradyne, 2000). It should be noted, 

however, that these are values obtained for the United States. Values 

for the Netherlands might deviate from these. Moreover, there might 

be differences related to the scope of the category ‘Other’.   

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.20: Distribution of incident 
duration  
(Source: Knoop, 2009) 
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As far as accidents are concerned, it is found that large differences in 

rate of occurrence can be observed for different road sections. The 

geometrical properties of the road sections turn out to be an important 

factor in this respect. Accidents mainly occur at road sections with an 

on or off ramp, at weaving sections, and at road sections on which one 

of the lanes ends (Kraaijeveld, 2008). For vehicle breakdowns, 

differences between different road sections25 obviously are likely to be 

smaller. 

 

To a certain extent, the occurrence of incidents is linked to the other 

sources of variations in traffic demand and supply. In particular this is 

the case for accidents. One of the dependencies between the 

occurrence of accidents and other supply or demand variations 

originates from the weather conditions (Figure 2.22). Earlier in this 

chapter it was already discussed that weather conditions might have an 

effect on traffic demand and traffic supply, the latter by affecting the 

driving speeds and the headways. However, weather conditions may 

also affect traffic supply by influencing the occurrence of accidents. 

During certain adverse weather conditions the accident rate is 

significantly higher than during good weather conditions (in spite of the 

road users adapting their driving behavior). This can be attributed to a 

reduced visibility (due to precipitation or fog), road surface slipperiness 

(due to wet, icy or snowy road surfaces, and resulting in longer 

breaking distances and increased probabilities of losing control), and 

reduced vehicle stability (vehicles may be blown sideways or blown 

over by strong wind gusts). Although not directly associated with ‘bad 

weather’, low sun (shortly after sunrise and shortly before sunset) may 

                                                   
25 Expressed in terms of the number of vehicle breakdowns per vehicle-kilometer, in order to 

correct for differences in road section length and traffic volume. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.21: Relative frequencies of 
occurrence of incident categories 
(Based on: PB Farradyne, 2000) 
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also increase the accident rate, by affecting the visibility (depending on 

the orientation of the roadway). 

 

 
 

Based on international literature, the SWOV (2009) concludes that the 

crash rate approximately doubles during rain. During nighttime the 

crash rate during rainfall appears to be even larger than during 

daytime. For Dutch state highways rainy conditions are reported to 

result in an increase in the number of accidents of between 25% and 

182%. Ice forming on the road surface is reported to result in an even 

larger increase: between 77% and 245%. Nevertheless, its impact on 

the total number of accidents is smaller, due to the fact that ice forming 

occurs far less frequently than rain (SWOV, 2009).  

 

For the effect of snow on the accident rate contrasting results are 

found in international literature. The SWOV refers to a study in which it 

was concluded that snow seems to lower the crash rate, because it 

makes road users drive more carefully. Maze et al (2005) on the other 

hand conclude that snowy weather greatly increases the crash rate.  

 

For the frequencies of occurrence of rain, snow, fog and black ice, the 

reader is referred to the earlier subsections on the weather effects on 

traffic demand and supply. On average, ice forming occurs on about 6 

days a year, as illustrated in Figure 2.2326. 

 

 
                                                   
26 It should be noted that this figure (as well as the average frequency of 6 days a year) does 

not specifically relate to ice forming on the road surface, meaning that for the road surface 

somewhat different values might apply. Furthermore, ice forming on the road surface is of 

course combatted by the road authority, which reduces the slipperiness. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.22: Relationships between 
the occurrence of accidents and other 
supply or demand variations, due to 
the common cause ‘weather 
conditions’ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.23: Average monthly 
numbers of days with ice forming 
(Based on data from KNMI, 2002) 
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Besides the weather conditions, also the luminance conditions might be 

a ‘common cause’ of the occurrence of accidents (affecting the traffic 

supply) and other supply fluctuations, resulting in these influence 

factors to be interrelated to some extent. In this case ‘other supply 

fluctuations’ refers to the effect that darkness might reduce the 

capacity and/or speeds by a few percent, as was discussed earlier in this 

section. As far as the occurrence of accidents is concerned, it can be 

assumed that in darkness the accident rate is higher, especially on 

locations without street lightning. It should be noted, however, that 

more (empirical or literature-based) research would be needed to find 

out whether this indeed is the case. 
 

The presence of road works might influence the occurrence of accidents 

as well. In view of the associated discontinuities in the road geometry, 

possible reductions of lane widths, and attention distraction due to 

ongoing activities, the presence of road works can be expected to result 

in a higher accident rate. Since road works have other effects on traffic 

supply and demand as well (discussed in other parts of this chapter), 

the occurrence of accidents and these other effects of road works are 

interrelated to some extent. In this case these interrelationships can be 

attributed to the common cause ‘road works’. 
 

Besides on the weather conditions, the luminance conditions, and the 

presence of road works, the accident rate is also dependent on the 

traffic conditions. Actually, this might well be the most important 

influence factor of all (see Mehran & Nakamura, 2009). In several 

studies (for freeways in the United States, freeways in Korea, and 

expressways in Japan, respectively) it was found that the relationship 

between the volume-to-capacity ratio and the accident rate follows a 

general U-shape pattern (Mehran & Nakamura, 2009). This means that 

the accident rate is relatively high for both low and high traffic 

volumes, and lower in between. 
 

That the accident rate is relatively high for high, free flow traffic 

volumes is of course quite logical, since larger traffic volumes give rise 

to more vehicle-vehicle interactions (each of which potentially might 

result in the occurrence of an accident), and result in smaller vehicle 

headways. If traffic is still free flowing, speeds are still rather high, 

resulting in little time to react on vehicles in front of one. 
 

That the accident rate is relatively high as well for very low traffic 

volumes, might be more surprising. A possible explanation for this 

might be found in the fact that mutual speed differences are relatively 

large for low traffic volumes. Furthermore, it should be noted that very 

low traffic volumes typically occur during nighttime, and therefore are 

automatically connected to darkness and a driver population that is 

different from the one at daytime27. Therefore, while being attributed to 

the very low traffic volumes, in fact the higher accident rate might 

(partially or completely) be due to differences in luminance and driver 

population. 

                                                   
27  On average, the nighttime drivers might be more ‘reckless’ than the daytime drivers, 

especially in the weekends.  
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Likely, the occurrence of traffic congestion affects the accident rate in 

two opposing ways. On the one hand, the lower speeds might result in 

the accident rate being lower. On the other hand, the shock waves in 

congested traffic flow cause extra traffic accidents (mainly head-tail 

collisions). It is not unlikely that this latter effect is dominant. More 

research would be needed, however, to find out whether this is indeed 

the case. 

 

Since the rate of occurrence of accidents is dependent on the traffic 

conditions, and the traffic conditions on their turn are dependent on all 

sources of variations in traffic demand and supply, in fact the rate of 

occurrence of accidents is related not only to the weather conditions, 

luminance conditions and the presence of road works (as discussed 

above), but to all other sources of demand and supply variations as well 

(although in a more indirect way). This is illustrated in Figure 2.24. 

Since the occurrence of traffic accidents is one of the sources of 

variations in the traffic supply itself as well, in fact the accident rate is 

also dependent on itself. Of course there is a dependency on the rate 

of occurrence of the other incident types as well. 

 

Please note that accidents are not the only type of incidents for which 

the probability of occurrence is dependent on the traffic conditions. 

Some other types of incidents (like vehicle breakdowns and cargo spills) 

for example are clearly dependent on the traffic volume: for larger 

traffic volumes these types of incidents are more likely to occur. 

Expressed in terms of the probability of occurrence per vehicle-

kilometer, these dependencies on traffic volume are smaller (or even 

absent), however. Besides on the traffic volume, the probability of 

occurrence of vehicle breakdowns is also dependent on the presence of 

traffic congestion: if the traffic state is severely congested, vehicle 

breakdowns are more likely to occur than in free flowing traffic. 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.24: Indirect dependency of 
the occurrence of traffic accidents on 
all other sources of supply and 
demand variations, as well as on 
itself 
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5) Demonstrations 

 

During demonstrations in some cases the road traffic is impeded by 

roadblocks or platoons of slow moving vehicles. Note that this kind of 

actions actually might affect the traffic demand as well (especially if 

they are announced in advance, or if they last for multiple days).  

 

The frequency of occurrence of this type of actions is rather low, 

however. Therefore, they cannot really be considered a source of daily 

variability in traffic congestion. For this reason, the influence of 

demonstrations will not be given any further consideration in this 

thesis. 

 

6) Emergencies 

 

Emergencies or disasters (like flooding) obviously may significantly 

affect the traffic supply characteristics (i.e. the capacity and 

(uncongested) operating speeds). Not only the physical conditions on 

the road might be seriously deteriorated, but the driving behavior 

might be significantly affected as well. After all, in (imminent) 

emergency situations people might very well behave differently than 

under normal conditions. In section 2.2.4 it was however already noted 

that in the rest of this thesis no further consideration will be given to 

this kind of situations, since they clearly cannot be considered to be 

contributing to the daily variation in traffic congestion (because of their 

very small frequencies/probabilities of occurrence). 

 

7) Variations in vehicle population 

 

The composition of the vehicle population on a road section is 

constantly changing. Different vehicles have different characteristics 

like length, acceleration and deceleration capabilities, and applicable 

speed limit. The result of this is that the traffic supply characteristics 

(i.e. the capacity and (uncongested) operating speeds) are constantly 

changing as well. 

 

A large part of this variation can be attributed to the variation in the 

(relative) amount of trucks. One truck consumes a larger part of the 

available capacity than one car. Expressed in the number of vehicles per 

unit of time the capacity therefore is lower if the percentage of freight 

traffic is larger. Besides considerable random short-term fluctuations, 

the percentage of freight traffic often shows a systematic variation over 

time as well. This is due to the fact that this freight traffic is quite 

evenly distributed over the day, while the other traffic is not. During 

the peak periods there is a lot of commuting traffic on the road, 

resulting in the percentage of freight traffic to be lower (and 

consequentially in the capacity – expressed in the number of vehicles 

per unit of time – to be higher).  

 

This variation in capacity can largely be ‘removed’ (artificially) by 

expressing both the traffic demand and the capacity in ‘passenger car 

equivalents’ (per unit of time). In this case trucks are converted into an 
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equivalent number of passenger cars. In the Netherlands, a value of 1.5 

appears to be a reasonable conversion factor for this (AVV, 2002).  

 

Geistefeldt (2009) estimated the conversion factor by determining for 

which value of this factor the coefficient of variation of the (free flow) 

capacity distribution becomes minimal, for a set of German freeways. 

(Note that normally, if capacity distribution functions are estimated in 

terms of vehicles per hour, the influence of the variations in the 

percentage of heavy vehicles is not explicitly considered. This influence 

is just part of the total stochastic variance of the capacity distribution 

function then.) With this method, Geistefeldt found conversion factors 

ranging from 1.3 to 2.6, for the different freeways considered. For an 

increasing number of lanes, the estimated conversion factor tended to 

decrease, indicating a smaller impact of heavy vehicles on freeway 

capacity. For the estimated values of the conversion factor, the 

coefficient of variation of the capacity distribution was reduced by up 

to 10% (as compared with the coefficient of variation of the capacity 

distribution in terms of vehicles per hour28). This means that apparently 

only a relatively small fraction of the capacity variation can be 

attributed to the varying percentage of heavy vehicles.  

 

Al-Kaisy et al (2002) found that the capacity effect of heavy vehicles is 

larger under congested conditions than under free flow conditions. Just 

like Geistefeldt, Al-Kaisy et al. estimated the conversion factor by 

determining its value for which the variation of the capacity distribution 

becomes minimal. However, instead of the free flow capacity, they 

considered the queue discharge rate. 

 

Mean conversion factors of 2.4 to 3.2 were found (with the highest 

value for a sloping road section). In addition, it was found that the 

conversion factor in fact is a random variable, which generally follows a 

normal distribution. This can be explained by variations in the weight-

to-power ratios among the trucks. It was found that the conversion 

factor was not dependent on the weather conditions or roadside 

maintenance work. The fact that the effect on the queue discharge rate 

turns out to be larger than the effect on the free flow capacity can be 

explained by the limited acceleration performance of heavy vehicles, 

hampering the traffic flow out of the front end of the queue (which 

reduces the queue discharge rate). The difference in the effect on the 

free flow capacity and the queue discharge rate may explain the 

capacity drop phenomenon (discussed in section 2.1). Furthermore, 

differences in the percentage of heavy vehicles between different 

locations might explain the differences in the capacity drop observed in 

practice (Al-Kaisy et al, 2002).  

 

Variations in the (relative) amount of freight traffic do not only affect 

the available capacity (expressed in the number of vehicles per unit of 

time), but also the average (uncongested) operating speed. This is due 

                                                   
28  Note that in both cases, the influences of a large number of other factors introducing 

variability in the freeway capacity (viz. weather conditions, luminance, work zones, incidents, 

and driver population) had been excluded. 



 
 
 

 

 

 
 63 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

to the fact that the speed limit for trucks (in the Netherlands 80 km/h) 

is lower than the speed limit for passenger cars (generally 100 or 120 

km/h in the Netherlands). As a consequence, the average speed gets 

lower as the proportion of freight traffic gets larger. This is not only 

due to the lower speeds of the trucks themselves, but also due to the 

fact that these slower trucks make the passenger cars slow down as 

well. The latter effect gets stronger for larger traffic densities (because 

of decreasing overtaking possibilities). 

 

8) Variations in driver population 

 

Another source of the variability in the supply characteristics (i.e. 

capacity and uncongested speeds) is the variability in the driver 

population. Just like the composition of the vehicle population, the 

composition of the driver population on a road section is constantly 

changing. Since different drivers behave differently (in terms of 

following the vehicles in front of them, changing lanes, desired driving 

speed, etc.), and this driving behavior is directly governing the capacity 

and (uncongested) operating speeds, this results in these supply 

characteristics to be constantly varying as well. 

 

Mutual differences in driving behavior among drivers (and 

consequently also differences in capacity and speed) can be attributed 

to both personal characteristics and trip characteristics. Examples are 

skills, experience, age, gender, risk-taking propensity, and travel 

purpose. Two clearly different driver populations are the one in the 

peak periods and the one in the off-peak periods. During the peak 

periods a large part of the traffic consists of commuters and other road 

users with a profession-related travel purpose (like commercial traffic). 

These typically are experienced drivers. As a consequence, during the 

peak periods the capacity can be expected to be relatively high. 

Outside the peak periods and especially during weekends, public 

holidays and vacation periods the share of social and recreational traffic 

is relatively high. These drivers are typically less experienced (not 

necessarily regarding driving itself, but also regarding the traffic 

situations they are faced with). This can be expected to result in a 

relatively lower capacity during these periods.  

 

For German autobahns (without a speed limit) Brilon and Ponzlet 

(1996) found that the uncongested average speeds (corrected for the 

effects of differences in traffic densities and proportions of freight 

traffic) generally are lower during periods with predominantly le isure 

traffic, such as Sundays or the summer vacation season. For four-lane 

metropolitan autobahns (two lanes per direction) differences between 

the various days of the week or months of the year of up to 3.5 km/h 

were found. Of course for Dutch motorways different values might be 

found, for example due to the presence of a speed limit. Note that the 

lower speeds during periods with predominantly leisure traffic might be 

an indication for the capacity to be lower during these periods as well 

(confirming what was suggested above), although this not necessarily 

has to be the case. 
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9) Traffic control actions 

 

Probably rush-hour lanes and dynamic speed limits are the clearest 

examples of traffic control being a source of variation in the traffic 

supply. The opening or closure of rush-hour lanes clearly has a direct 

effect on the total available capacity, by adding or removing a certain 

amount of capacity. Dynamic speed limits obviously create variation in 

the traffic supply characteristic by dynamically affecting the speeds at 

which the road users drive from A to B. It should be noted however 

that as far as the other traffic supply characteristic, i.e. the road 

capacity, is concerned, dynamic speed limits might just be the opposite 

of a source of variability. That is, they seem to reduce the variability in 

the capacity. This can be illustrated with Figure 2.25. This figure shows 

a comparison of the empirically derived (free flow) capacity 

distributions for two freeway sections, one with and one without a 

traffic adaptive variable speed limit 29. On the section with a variable 

speed limit the standard deviation of the capacity distribution is clearly 

significantly lower than on the section without a variable speed limit. 

 

  
 

Temporary closures of motorway segments for bridge openings can be 

considered traffic control actions as well. In the Netherlands, the 

motorway network contains several movable bridges, which are 

regularly opened. In such situations, all traffic is temporarily halted (i.e. 

the capacity is temporarily zero). In total, the whole process of opening 

the bridge, the passing of the ships, and closing the bridge takes several 

minutes. It should be noted that if the bridge opens according to a 

fixed schedule, and/or information is provided on the opening of the 

bridge, road users might anticipate it, by adapting their travel choices. 

This way the traffic demand may be affected as well. 

 

                                                   
29 These two sections are two opposing roadways of one and the same freeway, and therefore 

have similar geometric and traffic characteristics. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.25: Capacity distributions 
(based on 5-minute intervals) for 3-
lane freeway sections with and 
without a variable speed limit  
(Source: Brilon, 2005) 
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10) Intrinsic randomness in human behavior 

 

In the end, the capacity is dependent on the combined behavior of all 

individual drivers involved. To a large extent, the variations in this 

behavior can be explained by the factors discussed above (related to 

the external conditions and the composition of the traffic). Another 

part of these variations however cannot be explained by these factors. 

This is due to the fact that human behavior is characterized by a certain 

‘intrinsic randomness’. In spite of finding himself in similar 

circumstances, one and the same person may still behave differently. 

This might be the result of differences in this person’s mental 

constitution (i.e. differences in mood, level of fatigue, concentration, 

etc.) or have other, more inscrutable causes. 

 

In addition, while the other part of the variations in the behavior 

theoretically can be explained by the factors discussed above, this does 

not mean that this part of the variations also in practice can be 

completely explained by these factors. This is due to the facts that not 

all of these factors are equally well observable and that not all of these 

influences are fully understood. The result of both these practical 

problems and the ‘intrinsic randomness’ in human behavior is that 

when all observable and understood influences are taken into account, 

still a certain ‘residual randomness’ will remain. 

 

An indication of the magnitude of this residual randomness might be 

obtained by considering results from Brilon et al. (2005). They analyzed 

the (free flow) capacity distributions for a large set of 3-lane freeway 

sections (without a distinct bottleneck), based on empirical data for 5-

minute intervals. Unfortunately it is not clear from their article to which 

extent they have tried to exclude the explainable part of the variability 

(for example by only including data that are measured during certain 

specific conditions). It is only stated that periods of work zones were 

excluded from the data. As a consequence, the actual residual 

randomness might be smaller than the variability apparent from the 

distribution functions found by Brilon et al.  

 

Brilon et al. (2005) found that the empirical distribution of the (free 

flow) capacity is best represented by a Weibull distribution. In 

mathematics, this type of probability distribution is known as an 

asymptotical extreme value distribution for minimums. This 

characteristic of the Weibull distribution actually might play a role here 

as well. After all, assuming a constant traffic demand during the 5-

minute interval (the time interval of analysis), the decisive value of the 

capacity equals its minimum over the interval. 

 

Brilon et al. found that a Weibull shape parameter of about 13 seems to 

be characteristic for 3-lane freeways. For the Weibull scale parameter 

on the other hand widely varying values were found (from about 6000 

to about 7900 veh/h). Differences in geometric conditions, control  

conditions, driver populations and vehicle populations are suggested as 

possible explanations for this. For the expected value of the distribution 
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values were found ranging from about 5800 to 7500 veh/h, and for the 

coefficient of variation values ranging from 0.07 to 0.13. 

 

Based on the assumption that traffic breakdowns in succeeding time 

intervals (or rather the capacities in succeeding time intervals) are 

independent of each other (which is a realistic assumption according to 

Brilon et al., since there is no imaginable reason why the opposite 

should be true), the 5-minute capacity distribution function can easily 

be transformed into the corresponding distribution function for a longer 

(or shorter) time interval. In this transformation the shape parameter 

remains unchanged, while the scale parameter is decreased (in case of a 

longer time interval). This corresponds to a decrease in both the 

expected value and the standard deviation of the capacity, as would be 

expected. 

 

Less research seems to be conducted regarding the random variation in 

the queue discharge rate (i.e. the capacity after congestion has set in). 

This may be due to the fact that the free flow capacity is considered 

more important. After all, together with the traffic demand it is the free 

flow capacity that determines whether the transition from free flow 

conditions to congested conditions occurs or not. Therefore, 

fluctuations in this capacity might have an important impact on the 

resulting traffic conditions. Fluctuations in the queue discharge rate, on 

the other hand, might to a certain degree average out over the 

duration of the congested traffic state, resulting in their impact on the 

traffic conditions to be smaller.  

2.2.6 Interdependencies between the various sources of temporal fluctuations 

As noted already in the introductory subsection of this section, the 

various sources of variability are not all independent from each other. 

There are a lot of non-linear, dynamic dependencies involved between 

these fluctuations. These interdependencies are shortly discussed in this 

subsection. It would be taking things too far to discuss the individual 

interdependencies in detail. The purpose of this subsection is rather to 

give an overview of all interdependencies involved. Some important 

interdependencies have already been discussed in more detail in the 

previous subsections on the sources of variability concerned. 

 

First of all, there are many links between different sources of variabili ty 

because of the fact that these are all related to the common factor 

‘time’ in some way. As a result of this common time-dependency, 

different sources of variation are linked even without necessarily having 

a causal relationship. If their time-dependencies do reasonably ‘match’, 

they will ‘coincide’ more than would be the case if these time-

dependencies would not exist. If their time-dependencies instead are 

rather ‘divergent’, the situation is just opposite. In this case they will 

‘coincide’ less than if these time-dependencies would not exist. 

  

In Table 2.9, the dependencies in the frequency of occurrence (or 

patterns of occurrence) of all sources of variability on the factor ‘time’ 

are indicated, distinguishing between ‘time of day’, ‘day of week’ and 

‘period of year’. If different sources of variability have a -sign in one 
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and the same column (or even in more than one of the columns), this 

means that these sources are linked somehow due to their common 

time-dependency. 

 

Source of variability affecting 
demand 

or 
supply 

Dependency in frequency of 
occurrence or pattern of occurrence on: 

Time of 
day 

Day of 
week 

Period of 
year 

Regular pattern of variation in 
travel behavior over the day 

d    

Regular pattern of variation in 
travel behavior over the days 
of the week 

d    

Regular pattern of variation in 
travel behavior over the 
periods of the year 

d    

Public holidays d    

Events d    

Varying weather conditions d + s    

Road works d + s    

Randomness in travel behavior 
(i.e. unexplained variations) 

d    

Variations in vehicle population30 s    

Variations in driver population30 s    

Darkness s    

Incidents s    

Intrinsic randomness in driving 
behavior 

s    

 

In addition to these mutual interdependencies due to common time-

dependency, there are other interdependencies as well, which are more 

causal in nature. These interdependencies are shown in the tables 

below. A distinction is made between dependencies in the 

frequencies/patterns of occurrence of the sources of variability (Table 

2.10), and dependencies in the effects of the sources of variability 

(Table 2.11). 

 

As an example of a dependency of the first type, consider the 

dependency of the frequency of occurrence of accidents (a subcategory 

of incidents) on the weather conditions. As was already discussed in 

section 2.2.5, in adverse weather conditions the accident rate is 

observed to be significantly higher than under favorable weather 

conditions. This therefore is one of the dependencies included in Table 

2.10. 

 

As an example of a dependency of the second type, consider the 

interaction between the effects of adverse weather and darkness. 

Although the combination of adverse weather and darkness has a larger 

effect on the roadway capacity than each of these two conditions 

individually, it is known that this combined effect in general is smaller 

than the sum of both individual effects (AVV, 2002). Therefore, the 

                                                   
30 In fact, these sources of variability in traffic supply are strongly connected to the regular 

patterns in travel behavior, which are included in the table as sources of demand variations.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.9: Common time-dependency 
of sources of variability, resulting in 
mutual interdependencies 
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effect of the occurrence of one of these two sources of variability is 

dependent on the occurrence of the other, which is indicated in Table 

2.11. 

 

Note that in both tables ‘weather conditions’ and ‘road works’ are 

included twice, due to the fact that these are both a source of 

variability in traffic demand and a source of variability in supply. Strictly 

speaking, in Table 2.10 this double inclusion is not necessary, since as 

far as the frequencies of occurrence are concerned the distinction 

between demand variations on the one hand and supply variations on 

the other is in fact not relevant. In Table 2.11, however, this double 

inclusion is absolutely necessary, since the dependencies in the demand 

effects of these sources of variability are different from those in their 

supply effects. For example, the demand effect of weather conditions 

may be dependent on whether it is a public holiday or not (since on 

public holidays a larger part of the trips is non-discretionary in nature, 

resulting in a larger sensitivity to weather conditions), while the supply 

effect of weather conditions is not dependent on this (apart from any 

possible effects via the effect on the driver/vehicle population, which is 

separately accounted for in the tables). 

 

It should also be noted that the interdependencies indicated in the 

tables of course are not all equal in strength. Some of them are likely to 

be much stronger than others. In some cases it is not even certain if the 

indicated interdependency is really significant or not. More research 

would be needed to get clarity on this. 

 

From Table 2.10 it is clear that especially the occurrence of incidents is 

characterized by many dependencies on other sources of fluctuations. 

Obviously, these dependencies are primarily related to one specific  

subcategory of incidents, namely accidents. Note that, although this is 

not indicated in the table, the probability of occurrence of incidents is 

also clearly dependent on the traffic conditions (as discussed in section 

2.2.5), which actually makes the frequency of occurrence of incidents 

dependent on all sources of variations, including the occurrence of 

incidents itself. 
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Note the interaction effects between the regular patterns of variation in 

travel behavior at different time scales, indicated in the upper left 

corner of Table 2.11. As an example, consider the interaction effect 

between the regular pattern of variation in travel behavior over the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.10: Dependencies of the 
frequencies/patterns of occurrence of 
the different sources of variability on 
the occurrence/level of other sources 
of variability 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 2.11: Dependencies of the 
effects of the different sources of 
variability on the occurrence/level of 
other sources of variability 
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day, and the regular pattern of variation in travel behavior over the 

days of the week. The difference between the regular amounts of 

traffic demand on different days of the week is dependent on the time 

of the day, or formulated the other way around, the difference 

between the regular amounts of traffic demand on different times of 

the day is dependent on the day of the week. See also section 2.2.4 for 

an illustration of this interdependency (Figure 2.6). Between the regular 

pattern of variation in travel behavior over the day and the regular 

pattern of variation over the periods of the year a similar interaction 

exists. For the regular pattern of variation over the days of the week 

and the regular pattern of variation over the periods of the year this is 

the case as well. 

 

2.3 Network effects 

So far, the description of the traffic congestion mechanisms has been 

limited to individual road sections. However, between the traffic 

conditions on the various sections of a road (or road network) there are 

some strong spatiotemporal dependencies: 

- Due to its physical dimension, a traffic jam created on a certain 
road section might block the traffic flow on other road sections 
(of the same road or even of other roads) as well. (Referred to as 
the ‘blocking back effect’ of traffic congestion.) 

- By restricting the traffic throughput, and thereby delaying the 
traffic, the occurrence of traffic congestion on a certain road 
section influences the traffic demand on the downstream road 
sections. (Referred to as the ‘temporal redistribution effect’ or the 
‘filtering and releasing effects’ of traffic congestion.)  

- In situations with non-recurring congestion on a certain route, 
road users might deviate from their ‘standard’ route, in order to 
get around this traffic congestion. This will reduce the traffic 
demand on the congested route, but increase the traffic demand 
on the alternative routes. (Referred to as the ‘route choice effect’ 
of traffic congestion.) 

In the following three subsections, these three types of ‘network 

effects’ are discussed in more detail. 

2.3.1 Blocking back 

Due to its physical dimension, a traffic jam created by a certain 

bottleneck might block other traffic streams (consisting of travellers 

that do not even want to pass the bottleneck location) as well. During a 

certain period directly following on the onset of the congestion (i.e. the 

start of the formation of a queue), only road users with a destination 

downstream of the bottleneck are delayed by the congestion. However, 

as soon as the queue grows longer than the distance between the 

bottleneck location and the closest upstream off-ramp, travellers 

wanting to leave the motorway at this off-ramp (i.e. before the 

bottleneck location) will be delayed as well. From this moment onwards 

the queue will grow more rapidly, due to the effective capacity of the 

off-ramp being decreased (since it is blocked by the queue for the 

bottleneck). 
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This can be illustrated with the example given in Figure 2.26. In this 

case the outflow of the off-ramp is reduced by 50% due to the queue 

for the bottleneck blocking back to this off-ramp. Considering the 

system as a whole, the total outflow is reduced by (2500-

2250)/2500*100% = 10% due to the blocking back effect. This results 

in the queue growing (2500-2250)/(4500-2500)*100% = 12.5% 

faster. 

 

 

 
 

It is important to be aware of the fact that in order for the queue to 

block back to the off-ramp, it not necessarily needs to have a length 

greater than or equal to the distance between the bottleneck location 

and the off-ramp. This is related to the fact that queues might ‘travel’ 

upstream. This is explained using Figure 2.27.  

 

At a certain moment in time the available capacity at the (original) 

bottleneck location might be increased (for example due to the 

clearance of the incident that created the bottleneck), resulting in the 

queue starting to dissolve from its front side. This results in the head of 

the queue propagating upstream. However, in the meantime the queue 

often keeps on growing at the rear end, resulting in the tail of the 

queue propagating upstream as well. This makes the queue ‘traveling’ 

upstream. Due to the capacity drop (i.e. the phenomenon that the 

queue discharge rate is lower than the free flow capacity, which forms 

the upper limit of the inflow to the queue) such an upstream traveling 

queue may survive for quite a long time (for instance until the end of 

the peak period). Within this period it may travel a substantial distance. 

Along its way it might block other traffic streams, as illustrated in 

Figure 2.27. 

 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.26: Blocking back of a queue 
to an upstream off-ramp 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.27: Blocking back of an 
upstream traveling queue to an 
upstream off-ramp 
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The phenomenon of blocking back does not necessarily refer to the 

situation that a mainstream queue blocks the traffic stream to an off-

ramp. It also occurs in other configurations. This is illustrated in Figure 

2.28. In the situation depicted in the lower half of this figure a queue 

on the connecting roadway blocks the through traffic on the main 

roadway heading northwards. 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.28: Blocking back of a queue 
to another road 
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In fact, the situation depicted in Figure 2.28 is much worse than the 

one shown in Figure 2.26. Due to the blocking back effect, the total 

outflow of the system is reduced by one third31. The growth rate of the 

total queue length (expressed in the total number of queuing vehicles, 

combining the queue on the west-east road and the queue on the 

south-north road) is increased by as much as 100%32 (i.e. is doubled)! 

 

Knoop (2009) shows that the delays due to blocking back may form a 

substantial part of the total amount of network delay caused by an 

incident. For a large number of incident scenarios, Knoop computed the 

total amount of network delay with a simulation model in which 

blocking back effects are accounted for, and compared the results with 

those obtained when these effects are not taken into account in the 

simulation model. This is illustrated in Figure 2.29. Clearly, in many 

cases the computed delay is much too low if blocking back effects are 

not taken into account, especially if the drivers are assumed not to 

deviate from their intended routes. The exact degree of 

underestimation is of course dependent on the incident scenario 

considered.  

 

 

2.3.2 Temporal redistribution effect (filtering and releasing) 

By restricting the traffic throughput, and thereby delaying the traffic, 

the occurrence of traffic congestion on a certain road section influences 

the traffic demand on the downstream road sections. This can be 

illustrated with Figure 2.30. The upper part of this figure shows the 

‘normal’ (recurring) traffic situation at a certain road during one of both 

peak periods. The road has a bottleneck, resulting in a queue. 

 

                                                   
31 ((2000+1000)-(1000+1000))/(2000+1000)*100%=(3000-2000)/3000*100%=33% 

32 ((3000+1000-1000-1000)-(3000+1000-2000-1000))/(3000+1000-2000-1000)*100%= 

(2000-1000)/1000*100%=100% 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.29: Comparison of total 
amount of network delay in case 
blocking back is modeled and total 
amount of network delay in case 
blocking back is not modeled, for a 
large set of incident scenarios   
(Source: Knoop, 2009) 
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Now assume that on a certain day an incident occurs at a location 

upstream of the bottleneck. This situation is depicted in the lower part 

of the figure. Now the bottleneck location is ‘under the lee’ of the 

incident bottleneck location: at the incident location the throughput of 

traffic is restricted, reducing the traffic demand on the usual bottleneck 

location. As a consequence, at the latter location no traffic congestion 

occurs. All in all, the detriment brought about by the incident can be 

concluded to be smaller than it initially seems (i.e. if only looking at the 

incident location itself), since the incident results in an improvement of 

the traffic conditions further downstream. 

 

Of course, after the road is cleared again (and the traffic from the 

queue is ‘released’), the normal bottleneck location might still induce a 

certain amount of traffic congestion. However, if the incident lasts long 

enough (e.g. until well after the end of the peak period), in the 

meantime the queue in front of the incident location may have 

dissolved already. In this case, due to the incident, the traffic demand 

for the normal bottleneck location is redistributed over time in such a 

way that no congestion at all occurs at this location.  

 

 

 
 

The considered example might give the impression that traffic 

congestion always influences the downstream traffic demand in a 

favorable way. This however is not the case. This is illustrated with 

another example, depicted in Figure 2.31. Again the upper part of this 

figure shows the ‘normal’ (recurring) traffic situation at a certain road 

during one of both peak periods. One of the road sections has a lower 

capacity than the other parts of the road. This does not give rise to the 

occurrence of traffic congestion though, since this lower capacity is still 

sufficient to cope with the traffic demand. 

 

Now assume that on a certain day an incident occurs at a location 

upstream of the section with lower capacity. This incident results in the 

creation of traffic congestion upstream of the incident location (middle 

part of Figure 2.31). Now consider the situation in which the road is 

cleared at a moment in time when the queue is still there. This results in 

a large amount of traffic being ‘released’, resulting in a traffic demand 

which is larger than the capacity of the narrower section. As a 

consequence, traffic congestion is created at this location (which is 

shown in the lower part of the figure). In this case, the total detriment 

brought about by the incident is thus larger (instead of smaller) than it 

initially seems (i.e. if only looking at the incident location itself): the 

incident results in a deterioration of the traffic conditions further 

downstream as well (by concentrating the traffic demand in a shorter 

time span). 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.30: Positive influence of 
traffic congestion on downstream 
traffic conditions (filter effect) 
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The conclusion of the foregoing is that the occurrence of traffic 

congestion might affect the downstream traffic conditions in both a 

positive and a negative way. Please note that while in the examples the 

(upstream) traffic congestion was created by incidents, this is of course 

equally applicable to congestion with other causes. 

2.3.3 Route choice effect 

In situations in which the traffic conditions (i.e. levels of traffic 

congestion) are within their ‘normal’ range (or better), road users 

generally will stick to their standard routes. However, if the traffic 

conditions are significantly worse than what is considered ‘normal’ (as a 

consequence of for example an incident, an event or road works), road 

users might divert to other routes (possibly using the secondary road 

network), in order to get around the affected road segments. This will 

lead to a reduction of the traffic demand on the routes where the 

affected road segments are part of, which will positively influence the 

traffic conditions on these routes (meaning that these traffic conditions 

will deteriorate less than otherwise would have been the case). On road 

sections that are part of the alternative routes, however, traffic demand 

will be increased, affecting the traffic conditions in a negative way. 

  

It is not possible to give some universally applicable values for the 

extent of this route choice effect. This is due to the fact that the actual 

magnitude of this effect strongly varies from case to case, since it 

depends on: 
- the existence of route alternatives and the quality of these, 
- the extent to which the road users are aware of these route 

alternatives (from their own knowledge or by being 
informed/advised on them), 

- the degree to which the road users are informed on the traffic 
conditions on their routes (referring to both the current situation 
and the expected near-future evolution of this situation),  

- the extent to which the road users are prepared to deviate from 
their standard routes (probably depending on the composition of 
the driver population), and 

- the characteristics of the underlying causes of the ‘unusual’ level 
of traffic congestion (in case of an incident for example the 
duration of this incident). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 2.31: Negative influence of 
traffic congestion on downstream 
traffic conditions (release effect) 
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Knoop (2009) investigated how many people change their route when 

faced with unexpected congestion due to an incident, by comparing 

actual route choice behavior for five incidents on a Dutch motorway 

(A13) with the corresponding behavior on similar days without 

incidents. He found that the severity of the capacity reduction and 

therefore the severity of the delays are important factors for the degree 

to which the route choice is influenced.  

 

For incidents with minor impacts on the delays it seems that travelers 

do not deviate from their intended route, even in situations in which 

the alternative route would be slightly faster. For incidents with a 

considerable impact on the traffic conditions, however, Knoop found 

high percentages of users changing routes (even causing congestion on 

the alternative route). For one of the incidents this percentage was 

even higher than 50%. Knoop notes that these percentages in fact 

should be considered as lower bounds, since the ‘decision point’ 

considered actually was not the last opportunity to take an alternative 

route. Moreover, no correction was applied for the fact that part of the 

traffic had its destination in between the ‘decision point’ and the 

incident location (rather than downstream of the incident location). 

This part of the traffic might have had no other option than to stick to 

its intended route. 

 

The reaction in route choice behavior is found to be delayed relative to 

the traffic conditions. This might be due to the delay in the information 

to which the road users react. 

 

Kraaijeveld (2008) conducted a study similar to that of Knoop. In four 

out of five incident cases considered (on some Dutch motorways), no 

clear changes in route choice behavior were observed, probably due to 

a lack of good quality alternative routes and/or a limited impact of the 

incident on the traffic conditions. For one of the incidents (i.e. one with 

a much more severe impact, and relatively good alternative routes 

being available), however, a somewhat larger change in route choice 

behavior was observed. For this case it was concluded that 7% of the 

drivers switched to another route. This value is still far below the value 

of 50% reported by Knoop. This difference might be caused by for 

example differences in the quality of the available route alternatives 

and differences in the degree to which the road users were informed on 

the traffic conditions and the available alternatives. 

 

From Figure 2.29 (section 2.3.1) it is clear that changes in route choice 

(that are made in order to get around road segments on which the 

traffic conditions are worse than what is considered ‘normal’, in this 

case due to the occurrence of an incident) might have significant 

effects on the delays incurred by the road users. In the traffic 

simulations in which the route choice was assumed fixed (i.e. not 

adaptable to the traffic conditions at hand) often a much larger tota l 

amount of network delay was found than in the corresponding traffic 

simulations in which part of the road users were assumed to adapt their 

route choices to the traffic conditions. At the level of individual routes 

the relative difference in delay can be even greater. 
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3. Criteria for the level of traffic congestion 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1 Selecting appropriate criteria – introduction 

In order to be able to evaluate the performance of the traffic system 

with regard to traffic congestion (taking into account its variable 

nature), first of all a clear view is needed on when the traffic system 

actually is considered to perform well and when it is not, because this is 

not something obvious. In fact, the consideration of the inherent 

variability adds an extra dimension to this. Therefore, one of the first 

parts of the research project has been devoted to the issue of finding 

one or more appropriate criterion(s) for this evaluation. 

 

There does not exist a sharp ‘failure boundary’ with respect to the 

amount of traffic congestion (a threshold above which the motorway 

system can be considered to ‘fail’, and below which  the system can be 

considered to ‘function’). It could be suggested to consider the 

occurrence of traffic congestion as ‘failure’ (no matter how large this 

traffic congestion is). This does not really make any sense however, as 

the crux is in the extent of this traffic congestion. A little bit of traffic 

congestion occurring every day is not very harmful. Besides, even in 

quiet traffic conditions (without any traffic jams), travel time already 

gradually increases with rising traffic volume. 

 

In the end, it is all about the costs that traffic congestion causes to 

society. Therefore, first of all consideration has been given to the 

question which features describing the traffic congestion phenomenon 

can be identified as being most decisive in bringing about costs to 

society (section 3.2). These typically are the features that need to be 

incorporated in the indicators. 

 

Prior to the selection of indicators to be used in the remainder of the 

project, it has been checked which indicators are used in international 

literature, and which norms were used in the Dutch national traffic 

policy during the past few decades (section 3.3). 

 

The final selection of indicators is discussed in section 3.4. Insofar as 

the known criterions (discussed in section 3.3) turned out to be 

inadequate (considering the findings from section 3.2), new or modified 

criterions were included in the selection. 

 

In various empirical studies, strong relationships are found between the 

average travel time (or the average delay, corresponding to the 

difference between the average travel time and the free flow travel 

time) and other indicators based on the travel time distribution. These 

findings and their implications for this research project are discussed in 

section 3.5. 
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3.2 Societal costs of traffic congestion 

3.2.1 Complexity of the topic 

This section attempts to clarify how traffic congestion imposes costs on 

society. This is a complicated matter, because of the fact that costs in 

the restricted sense actually represent only part of the story. This can 

best be illustrated by a simple example. Consider a hypothetical 

situation in which cities A en B are not connected by the road network. 

Because of the fact that there is no connecting road, there is no traffic 

and consequently no traffic congestion costs either. Now a connecting 

road is constructed. This road attracts a lot of traffic, resulting in serious 

traffic congestion. Despite the large costs associated with this traffic 

congestion, the road users still gain from the road (otherwise they 

would not use it, obviously). This is because of the benefits that they 

derive from their trips, which apparently are larger than the costs 

experienced as a result of the traffic congestion. 

 

If the road would be wider (resulting in a lower level of traffic 

congestion), even more trips would be made, since more travelers 

would be able to derive a positive net benefit (individual benefits 

derived from the trip, minus congestion costs experienced during the 

trip) from the trip in this case. Clearly, these additional net benefits 

because of extra trips are something to be taken into account in the 

evaluation of the effectiveness of measures aimed at improving the 

situation with respect to traffic congestion problems. It is quite arbitrary 

whether to consider these additional net benefits (that are missed if 

traffic congestion problems are not reduced) as a potential gain that 

can be attained by alleviating traffic congestion, or as a cost of traffic 

congestion that can be removed by alleviating traffic congestion. In this 

thesis the latter point of view is taken. That is, ‘costs’ is defined here in 

a broad sense: the reduction in net benefits due to traffic congestion.  

3.2.2 Types of societal costs 

Traffic congestion imposes costs on society in various ways. Below, a 

description will be given of the different types of costs. Next, 

consideration will be given to the issue of how these different costs are 

related to variables describing the traffic conditions. This has to provide 

important information regarding the indicators to be selected in order 

to be able to evaluate the traffic system’s performance (with regard to 

traffic congestion). 

 

The following types of societal costs are distinguished: 

1) loss of time due to longer travel times, 

2) costs due to uncertainty in travel times, 

3) increase of both fuel consumption and wear and tear, 

4) travelers diverting or staying away, 

5) increase of the number of accidents, 

6) larger load on the environment, 

7) indirect costs related to settlement behavior and logistic chains,  

8) discomfort. 

Below, these cost items will be described one by one. 
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1) Loss of time due to longer travel times 

Due to the traffic congestion, travel times are longer (Figure 3.1). 

In a situation without traffic congestion, this additional time could 

have been used for some other purpose. People could have made 

better use of their time, and capital goods (like trucks) could have 

been used more efficiently. As far as the transport of perishable 

products is concerned, longer travel times result in a reduction of 

the time available for selling these products. Please note that in this 

thesis, ‘traffic congestion’ is not limited to the occurrence of traffic 

jams. Also in free flow traffic, travel times gradually increase with 

rising traffic density/volume. The delay associated with this rise in 

travel time is understood as a cost of ‘traffic congestion’ as well. 

When comparing the traffic system’s performance in different 

situations, one has to be aware of the fact that a comparison based 

on delay only makes sense if this delay is expressed in relation to a 

(reasoned) fixed reference level of travel time/speed. This can be 

illustrated with the following example. Consider a rural road 

connecting two cities with a travel time of about 2 hours. There is 

no delay, because of the fact that the road is hardly used (owing to 

the long travel time). Now assume that this rural road is replaced by 

a motorway, reducing the free flow travel time to about 1 hour. 

Because of this shorter free flow travel time, a lot of people start 

traveling between the two cities, using the new motorway. This 

results in the occurrence of traffic congestion, increasing the travel 

time up to 1.5 hours. 

Using the two different free flow travel times as reference levels 

(instead of a fixed, common reference level), a comparison of the 

two situations would result in the conclusion that traffic conditions 

are worsened: in the new situation there is a delay of half an hour, 

while in the previous situation there was no delay at all. Obviously, 

this conclusion is wrong. After all, in despite of the delay, the travel 

time (free flow travel time + delay) in the new situation is still 

shorter than in the original situation. Using a fixed reference level 

for delay can prevent such false conclusions. Comparing situations 

based on travel time instead of delay is another option. 

 

travel time 

uncongested travel time

cost item 1
(longer travel time)

actual travel time 

 
 

2) Costs due to uncertainty in travel times 

Typically, traffic congestion not only results in longer travel times, 

but in uncertainty in these travel times as well. This uncertainty is 

another source of societal costs. The costs involved can be divided 

in two subcategories: costs due to late arrivals (item 2a), and costs 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.1: Costs due to longer travel 
time 
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due to waste of time related to arriving early (item 2b). Due to the 

uncertainty in travel times, the arrival time of a trip (or the other 

way around: the departure time required to arrive at a desired 

moment in time) is uncertain. Travelers deal with this uncertainty 

by adding a certain buffer to the travel time that they expect for 

their trip. 

The size of these buffers mainly depends on: 

- the variability in travel times, 

- the predictability of this variation33 (governed by regularity 

in the variation, knowledge, travel information, and travel 

time stability), 

- the possibilities for diverting (governed by the availability of 

both alternative travel options and travel information), 

- the travel purpose, and 

- personal characteristics. 

Note that such a buffer not necessarily is an addition to the 

‘expected’ travel time. A negative ‘buffer’ might occur as well. This 

might be the case if arriving late is no problem at all, or if the 

traveler in question is rather risk prone. 

2a) Costs due to late arrivals (Figure 3.2) 

If the delay due to the traffic congestion was not (completely) 

anticipated upon (by including a sufficiently large buffer in one’s 

time planning), one arrives late. Often, the costs of arriving x 

minutes late are higher than the costs of just having an x minutes 

longer travel time (cost item 1). This is because of the fact that late 

arrivals have consequences like appointments being missed or 

delayed, or supplies being run out of (resulting in disruption of 

production processes, and/or loss of sales). In order to limit the 

probability of running out of supplies, firms might opt for keeping 

larger stocks. However, because of the costs associated with 

keeping larger stocks, modern strategy in business is just the 

reverse: minimizing the need for stocks by ‘just-in-time’ deliveries. 

 

travel time 

uncongested travel time

cost item 1
(longer travel time)

cost item 2a
(arriving late)

travel time accounted for in time planning 
(uncongested travel time + 'expected' delay + buffer) 

actual travel time 

 

2b) Costs due to waste of time related to early arrivals (Figure 3.3) 

If the actual travel time turns out to be shorter than the travel time 

planned for (‘expected’ travel time + buffer), a certain amount of 

time is left over. Often, this remaining time period is partially or 

                                                   
33 Please note the difference between variability and uncertainty. The costs are related to the 

uncertainty in travel times. If the variation in travel times would be completely predictable, there 

would not be any uncertainty at all. In this situation, this cost item would not be there either. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.2: Extra costs due to late 
arrival 
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entirely wasted (due to the fact that it cannot be efficiently used for 

another purpose anymore). 

 

travel time 

uncongested travel time

cost item 1
(longer travel time)

cost item 2b
(waste  of time)

travel time accounted for in time planning 
(uncongested travel time + 'expected' delay + buffer) 

actual travel time 

 

In total, the costs associated with the uncertainty in travel times are 

believed to be of the same order of magnitude as the costs 

associated with the increase in travel times alone (cost item 1):  

- The day-to-day variation in the amount of delay is found to 

be of the same order of magnitude as the average amount 

of delay (Van Toorenburg, 2003). 

- The appraisal of one minute standard deviation is believed 

to be approximately equal to the appraisal of one minute 

average travel time: for freight transport a ratio (‘reliability 

ratio’) of 1.24 has been derived, and for passenger cars 

usually a ratio of about 0.8 is found (Kouwenhoven et al., 

2005). 

 

3) Increase of both fuel consumption and wear and tear 

In congested traffic operations, fuel consumption is often higher 

than in free flow traffic conditions. To a large extent, this is caused 

by the fact that in congested traffic conditions often large 

fluctuations in speed occur (‘stop-and-go-traffic’), resulting in a lot 

of acceleration and deceleration. Besides in higher fuel 

consumption, this also results in larger wear and tear of the vehicles 

involved. 

 

4) Travelers diverting or staying away  

Because of traffic congestion, part of the (potential) travelers opts 

for another trip (other departure time, other route, other transport 

mode, or other destination), or decides to stay at home. This way, 

the people in question save themselves the costs that they would 

be confronted with when ‘taking part’ in the traffic congestion. 

However, these costs are exchanged for other (lower) ‘costs’. As 

discussed in section 3.2.1, ‘costs’ should be taken broadly here: any 

reduction in net benefits34 as compared to the situation of making 

the preferred trip without any traffic congestion should be 

considered as ‘costs’. 

This can be illustrated with the following example. Consider a 

traveler selecting another destination than his preferred one, 

because of the fact that the routes to his preferred destination are 

                                                   
34 Net benefits = benefits derived from the trip – costs incurred by making the trip. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.3: Extra costs related to 
arriving early 
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heavily congested. By doing this, the traveler saves himself 

congestion costs. However, visiting the alternative destination is 

less valuable to him than visiting his preferred destination. In this 

way, the costs related to the traffic congestion are eliminated only 

for a limited part. A large part of the ‘true’ congestion costs simply 

is exchanged for other ‘costs’ (reduction in the benefits derived 

from the trip). These ‘costs’ should be attributed to the traffic 

congestion as well. (They could be considered as a kind of 

‘substitute’ costs for the ‘true’ traffic congestion costs.) 

 

5) Increase of the number of accidents  

Traffic congestion probably results in more traffic accidents 

occurring (head-tail collisions). These accidents lead to physical 

injuries and material damage. 

 

6) Larger load on the environment  

By emitting harmful exhaust fumes, depleting fossil fuels, and 

producing noise and odors, traffic imposes a load on the 

environment. Traffic congestion causes this load to be larger. 

 

7) Indirect costs related to settlement behavior and logistic chains  

Traffic congestion problems have a negative influence on the 

settlement behavior of firms: firms might decide to settle in another 

area, where accessibility is better. Furthermore, traffic congestion 

problems might negatively affect logistic chains (from an 

economical point of view). For example, shippers may decide to 

start forwarding their freight to the European hinterland via 

Antwerp instead of Rotterdam. These processes have all sorts of 

(long-term) effects, like effects on employment and effects on tax 

revenues. 

 

8) Discomfort  

Though maybe not literary a societal cost, also discomfort may be 

mentioned in this list. Due to traffic congestion, driving comfort is 

lower. After all, in congested conditions there is less freedom to 

maneuver, desired driving speeds cannot be attained, the driving 

task may be more demanding (think of having to accelerate and 

decelerate all the time, due to shock waves in the traffic flow), and 

one might get stressed due to the uncertainty regarding whether 

one will arrive on time or not. 

3.2.3 Cost items in relation to variables describing the traffic conditions 

In the previous subsection, only a general description of the various 

cost items was provided. In this subsection, consideration will be given 

to the issue of how these different costs are related to variables 

describing the traffic conditions. As indicated before, this has to provide 

important information regarding the indicators to be selected in order 

to be able to evaluate the traffic system’s performance (with regard to 

traffic congestion). Note that in this subsection, the various cost items 
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are still considered separately. Obviously, it is desirable to combine 

them into a more limited number of indicators. The attempt to do this 

is described in a following section. 

 

1) Loss of time due to longer travel times 

This cost item probably is the one that can be expressed in terms of 

variables describing the traffic conditions most straightforwardly. It 

can simply be addressed by looking at the average travel time or 

delay of the road users. This average has to be calculated over a 

period of time that is sufficiently long to properly grasp the 

influence of all (systematic and random) variations over time. This 

means that at least a period of a year should be considered, but 

preferably longer. 

As was explained before (in subsection 3.2.2), it is important to 

take a fixed reference level if travel time costs are expressed in 

terms of delay. Rijkswaterstaat uses a level of 100 km/h for this. 

Even if such a fixed reference level is used, the indicator ‘delay’ is 

still not the most appropriate one however. This is related to the 

fact that this indicator fails to properly represent the costs of 

congestion if drivers make detours to avoid congested locations. If 

delay is defined as the amount of additional travel time incurred 

due to the speed being below the reference level, this detour 

making behavior results in the average amount of delay being 

lower35. However, this reduction in delay time obviously is partially 

compensated for by an increase in the free flow travel time (related 

to an increase in the distance to be covered). While this is not 

reflected in the indicator ‘delay’, it is reflected in the indicator 

‘travel time’. Therefore it seems better to address the cost item by 

looking at the average travel time, instead of looking at the average 

delay. 

The average travel time can be considered at different aggregation 

levels: at road section level, at route level, at origin-destination 

level (combining the travel times on different routes between the 

origin and destination), or even at network level (averaging the 

average travel times on all elements that are part of the network 

(road sections / routes / origin-destination relations), weighted by 

the relative numbers of trips). On the one hand it is convenient to 

employ the highest possible aggregation level. After all, this makes 

the analysis more manageable. On the other hand, the higher the 

aggregation level, the more (potentially relevant) information is 

lost. Indeed, at a higher aggregation level improvements and 

deteriorations at different locations might offset one another.  

Since road users might start making detours if traffic conditions on 

a certain road section / route get too bad (i.e. traffic might shift 

between different (parallel) road sections / routes), in fact the levels 

of road sections and routes are too low to be selected as level of 

                                                   
35 After all, in general travel speeds on detour routes are higher than those on the original 

routes, because otherwise it would not make sense to make the detour. 
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analysis. The network level however is too high, since too much 

information is lost on this level. Therefore it is preferred to consider 

the average travel times on the level of origin-destination relations. 

Of course, just like that road users might switch to another route in 

response to changed traffic conditions, they might change their 

destination as well. This might make one concluding that in fact the 

origin-destination level is not appropriate either. However, since 

this process of changing destinations is believed to be weaker (and 

at least much slower) than the process of switching routes, and in 

view of the fact that it is considered really undesirable to use a 

higher aggregation level (because of the loss of information 

associated with this), the origin-destination level is selected as the 

preferential level of analysis nonetheless. 

As far as the time domain of the travel time average is concerned, it 

might both be decided to consider only one general average, or to 

make a distinction according to various periods of the day and/or 

week. In the latter case different periods are distinguished (like 

morning peak – evening peak – off-peak, or weekday – weekend 

day), for which separate averages are computed. While the former 

option is convenient to make the analyses more manageable, using 

the latter approach might provide valuable additional information. 

Finally, it should be noted that it is important to be aware of the 

fact that not all the delay / increase in travel times can be 

attributed to the occurrence of traffic congestion. Speed limit 

restrictions related to road works and incidents, and speed 

reductions in bad weather conditions can be sources of delay as 

well. 

 

2) Costs due to uncertainty in travel times 

Travel time distribution 

For this cost item it is much more difficult to relate the costs to 

variables describing the traffic conditions. There is still no consensus 

on the issue of which quantitative measure(s) best reflect(s) travel 

time uncertainty (Bogers et al, 2008). Obviously, the costs due to 

this uncertainty are strongly dependent on the distribution of the 

travel times (Figure 3.4). Especially the width of this distribution 

(representing the variation in travel times) is very important in this 

context: the larger the variation in travel times, the larger the loss 

suffered due to arriving late and arriving early. 
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What travel time distribution? 

When claiming that ‘the distribution of the travel time’ is 

important, it is necessary to clearly define what is actually meant by 

this distribution. The variation in travel time can be subdivided in 

the following two main components: 

- ‘within-day’ variation: variation over de course of the day; 

- ‘day-to-day’ variation: variation between days, for a given 

time of the day. 

Consequently, one can think of different types of travel time 

distributions: 

- the day-to-day distribution, for a given time of the day; 

- the within-day distribution, for a given day; or 

- the global (overall) probability distribution, for all moments 

in time (i.e. combinations of day and time of the day) 

together. 

The issue of which of these distribution types to consider is closely 

related to the trip making behavior. This trip making behavior is the 

result of people’s activity patterns. These activity patterns partly 

have a repetitive nature. This repetitive part of the activity patterns 

results in trips that are repeated at fixed moments in time. For 

example, many commuters go to their work every weekday at 

about the same point in time. For these trips, within-day variation 

in travel time is not important at all; the day-to-day variation is the 

only variation that is experienced by the road users involved. As far 

as this kind of trips is concerned, consideration thus has to be given 

to the day-to-day distribution of travel time. Commuting (i.e. 

home-work) trips are not the only example of this kind of trips. 

Freight transport trips often have fixed schedules as well. Part of 

the business trips is made on a regular basis too. For social-

recreational trips the same applies. 

The other part of the trips however does not take place repeatedly 

at fixed moments in time. These are solitary trips, and trips that do 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.4: A travel time distribution 
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take place repetitively, but scattered over time instead of on a 

regular basis. For these trips not the day-to-day travel time 

distribution, but rather the global (overall) distribution should be 

considered. Because of the fact that for part of the trips the global 

(overall) distribution is important and for the other part the day-to-

day distribution, in this project consideration should be given to 

(features of) both of these distributions. 

Another important issue related to the definition of the travel time 

distribution is whether it is defined with respect to time (resulting in 

statements like: ‚in one on five days, travel time is larger than 10 

minutes‛), or with respect to trips (resulting in statements like: ‚in 

one on five trips (not necessarily of one and the same person), 

travel time is larger than 10 minutes‛)36. Opting for the one or the 

other definition might result in different distributions, due to any 

possible dependencies between the amount of trips (per unit of 

time) and the travel time. (For instance: in busier traffic conditions 

travel times are more likely to be longer.) 

It is hard to say which option is best in this context. In this project, 

it has been chosen to define the travel time distribution with 

respect to time (the easiest option from a computational point of 

view). For the global (overall) travel time distribution, this choice 

may seem less obvious than for the day-to-day travel time 

distribution. One might argue that a definition with respect to time 

is rather ‘unfair’ in this case, because of the fact that trips are very 

unevenly distributed over the day. Here it should be born in mind 

however that this global travel time distribution is considered in 

relation to only a subset of the trips (see above). In this subset the 

commuting trips are not included. These commuting trips are to a 

large extent responsible for the unevenness in the distribution of 

the trips over the day. The other (i.e. non-commuting) trips actually 

are relatively evenly distributed over time (if the night period is lef t 

out of consideration). 

One more important issue related to the definition of the travel 

time distribution is whether this distribution should be considered at 

road section level (i.e. the distribution of road section travel times), 

or at the level of routes (i.e. the distribution of route travel times). 

These two approaches are likely to give different results, among 

other things due to the fact that travel time fluctuations on the 

different road sections in a route might compensate for each other 

(which would result in the relative travel time variation on route 

level being smaller than the relative variance on section level). In 

fact, choosing between the two approaches is quite 

straightforward. After all, the societal costs associated with travel 

time uncertainty are due to the uncertainty in travel times of trips. 

                                                   
36 If the travel time distribution is to be derived from empirical or simulated data, in the latter 

case (i.e. defining the distribution with respect to trips) all travel times should be weighted 

according to the amount of trips / road users involved, while in the first case (i.e. defining the 

distribution with respect to time), all travel times (each corresponding to a certain 

measurement interval) would be weighted equally.   
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Therefore, instead of considering the distribution of road section 

travel times, rather the distribution of route travel times should be 

considered37. 

In fact, this approach is still not optimal though. This is because of 

the fact that in part of the cases, road users have the possibility to 

deviate from their ‘standard’ route, by which they can get around 

heavily congested locations. This results in the travel time 

distribution between the origin and destination being less 

unfavorable than the route travel time distribution suggests. 

Consequently, the costs associated with the uncertainty in travel 

time (i.e. costs associated with arriving early or late) are lower than 

may be deduced from the route travel time distribution. 

This leads to the conclusion that in fact not this route travel time 

distribution should be considered, but the distribution of the travel 

time on the origin-destination relation. However, this distribution is 

rather difficult to obtain, because it is highly dependent on the 

information received by the road users (information regarding the 

traffic conditions and the available alternatives), as well as on the 

extent to which the road users actually use this information / these 

alternatives. Furthermore, the various road users will all be different 

from one another in this respect. Some drivers will be better 

informed than others, and some drivers will be more prepared to 

deviate from their ‘standard’ routes than others. Therefore , it is 

chosen to consider both extremes: road users that always stick to 

their ‘standard’ routes on the one hand, and fully informed road 

users that always select the best route alternative available on the 

other hand 38 . For the first group, simply the route travel time 

distribution can be considered. For the latter group, the travel time 

distribution should be constructed by selecting for each 

‘measurement’ time interval the shortest travel time available 

(among the travel times of the various alternative routes). 

Now that it is decided to consider (indicators derived from) the 

distribution of origin-destination travel times, it still has to be 

decided in what range the distances of the origin-destination 

relations to be considered should be: should we focus on long 

origin-destination distances, on short ones, or both? Considering 

long distance or short distance origin-destination relations is likely 

to give different results, for example due to the facts that:  

                                                   

37 In fact, these should be routes ‘from door to door’. However, in this project routes between 

nodes in the motorway network will be considered. This is because of the facts that: 

- Nearly all road users have a different combination of origin and destination, 

resulting in a door-to-door analysis being virtually impossible. 

- In this project, focus is on congestion problems at the motorway network (and not 

on congestion problems on the underlying network). 

In the ensuing of this chapter, an ‘origin-destination relation’ should thus not be interpreted 

as a ‘true’ door-to-door relation, but rather as a relation connecting two network nodes. 

38  This is considered a more correct approach than considering a kind of ‘averaged’ 

distribution. 
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- On longer distance origin-destination relations, travel time 

fluctuations on various parts of the routes are more likely to 

compensate for each other than on shorter distance origin-

destination relations (which might result in longer distance 

origin-destination relations having a relatively smaller travel 

time variation). 

- On longer distance origin-destination relations there may 

be more route alternatives than on shorter distance origin-

destination relations. 

Generally, the main function of the motorway network is 

considered to be the facilitation of long distance trips (with an 

adequate level of service). Therefore, one might be inclined to say 

that only longer distance origin-destination relations should be 

considered. This would be a rather naïve point of view however. 

Currently, the motorway network is being used by a lot of short 

distance traffic as well. This is mainly caused by the sharp focus on 

the main road network in the Dutch traffic policy of the past. In this 

traffic policy, facilitating long distance traffic was considered the 

main function of the main road network, but where possible, short 

distance traffic had to be handled via this network as well, in view 

of the associated benefits regarding traffic safety and quality of life. 

This has resulted in the underlying network remaining 

underdeveloped, and the main road network being used by a lot of 

short distance traffic. 

Regardless of the view as to whether this situation actually is 

desirable or not, it is undeniable that the current situation is like 

this, and that consequently traffic congestion imposes costs on 

society not only by affecting long distance traffic, but also by 

affecting short distance traffic. Therefore, it is preferable to look at 

shorter distance origin-destination relations as well.   

Finally, it should be decided for which time(s) of the day the day-

to-day travel time distribution should be considered. Of course, 

considering only one day-to-day distribution (i.e. for only one 

specific time of the day) is not sufficient, since the day-to-day 

distribution will be very different for different periods of the day. 

Therefore, a number of day-to-day distributions should be 

considered, each for a different time of the day. In view of the 

differences within a peak period – the travel time distributions for 

the shoulders of a peak period are very different from the 

distribution for the peak of the peak period (see for example Van 

Lint et al, 2008) – considering one day-to-day distribution for each 

individual peak or off-peak period is still not sufficient. On the 

other hand, considering travel time distributions for each single 

minute of the day would be overdone. After all, travel times in two 

consecutive minutes will be almost equal. 

For the peak periods, it was decided to consider three different 

travel time distributions (per peak): one in both shoulders of the 

peak, and one in the middle of the peak period. For the off-peak 

periods, one travel time distribution (per off-peak period: night, 
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midday and evening) is considered sufficient, in view of the 

following considerations: 

- The off-peak period travel time distribution is less variable 

over time than the peak period travel time distribution. 39 

- Although the off-peak distributions are certainly not 

irrelevant, they are considered less important than the peak 

period ones. After all, traffic congestion problems are 

typically largest during the peak periods. 

Distribution skewness 

Above, it has been stated that especially the width of the travel 

time distribution (representing the variation in travel times) is a very 

important factor for the costs associated with the uncertainty in 

travel times. It is very likely however, that these costs are not only 

related to the width of the travel time distribution (expressed in for 

example variance or standard deviation), but to the shape of the 

distribution as well. In this respect, an important characteristic is 

that travel time distributions often are skewed (left skew; long tail 

to the right). Van Lint et al (2008) state that the (economic) 

consequences of this skew are substantial: the consequences of 

extremely long delays may be much more severe than those of 

modest delays, since their result may be that appointments or trip-

chain connections are completely missed instead of just delayed. 

Therefore, they argue that it should be preferred to use indicators 

in which besides the width of the travel time distribution, also its 

skew is incorporated. 

How large the relative importance of the skew really is (i.e. its 

relative contribution to the total uncertainty-related costs), actually 

is not precisely known. To a large extent, this relative importance is 

determined by: 

- the precise relationships between the amount of time 

arriving early or late and the costs associated with this 

(which of course will vary from trip to trip, depending on 

for instance travel purpose), and  

- the way in which travelers respond to / anticipate on the 

characteristics of the travel time distribution (including the 

skewness), in scheduling their trips (including the selection  

of a certain ‘buffer time’). 

Despite the uncertainty regarding the exact importance of the 

skewness, it seems reasonable to assume that its influence on the 

costs is quite significant indeed. For that reason, it seems wise to 

include this characteristic of the travel time distribution in the 

indicator(s). 

                                                   
39 To avoid any confusion, please note that it is the temporal variability of the travel time 

distribution which is considered here, and thus not the temporal variability of the travel time 

itself. Contrary to the travel time distribution, the travel time itself might obviously strongly 

vary during the off-peak period, for example due to the occurrence of incidents or road 

works.  
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The role of the unpredictability of travel time variations 

While the travel time distribution is an important indicator for the 

costs due to uncertainty, it is certainly not a sufficient one. The 

travel time distribution only describes the variability in travel times. 

This is not the same as the uncertainty in travel times. Given the 

variability in travel times, uncertainty is governed by the degree of 

unpredictability of this variability (see Figure 3.5). In the 

hypothetical situation in which the variation is completely 

predictable, of course there would be no uncertainty at all (and 

consequently no costs associated to this uncertainty either 40). This 

makes the problem more difficult, since the variability in travel 

times is directly observable, but the degree to which this variation is 

predictable to the road users is not. In fact, this predictability varies 

greatly among the individual road users. 

Basically, the predictability is governed by: 

- the degree of regularity in the variation, and the extent to 

which any possible recurring patterns are known to the 

road users, and 

- the amount of information that road users receive (traffic 

information, but also weather forecasts and announcements 

of road works), and the predictive power of this 

information. 

First, the issue of regularity in the variation will be discussed. After 

that, the influence of information will be addressed. 

 

                                                   
40  Late arrivals will not occur in this situation, because of the fact that the travel time 

variations can be planned for. Early arrivals (resulting in a (partial) waste of buffer times) will 

not occur either.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.5: Determinants of travel 
time uncertainty 
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Regularity in the variation 

Related to the existence of certain regular human activity patterns, 

some significant regular patterns can be observed in the travel time 

variation. The extent to which these recurring patterns are known 

to the road users is dependent on the amount of experience they 

have in the traffic system, and the relative contribution of the 

recurring variation to the total variation. 

As argued before, the variation in travel times can be subdivided in 

two main components: ‘within-day’ variation and ‘day-to-day’ 

variation. On average, in the within-day variation clearly some 

regular pattern can be discerned: during the night travel time 

typically is lowest, and during morning and evening peak travel 

time is highest. Most travelers will have a certain (rough) awareness 

of this regular pattern. As such, this within-day variation is 

predictable to a certain extent, resulting in the uncertainty being 

lower than the global (i.e. overall) travel time distribution might 

suggest. It is virtually impossible to express this effect in numbers 

(or in modifications to the travel time distribution) though, if only 

because of the fact that each road user is different in this respect.  

Therefore, only the two extremes will be considered: road users 

that are completely unaware of the regular pattern in the within-

day variation, and road users that have full knowledge of the 

within-day variation. It is assumed that the first group of road users 

is completely unaware not only of the regular pattern in the within-

day variation, but of any possible regular patterns in the day-to-day 

variation (to be discussed below) as well. 

As far as this first group is concerned, consideration should be 

given to the (unmodified) global (i.e. overall) travel time 

distribution. (Uncertainty = variation for these road users.) For the 

road users in the second group (having full knowledge of the 

within-day variation), only the day-to-day distribution is left over as 

source of uncertainty. As far as these road users are concerned, it 

thus is sufficient to consider the day-to-day distribution of travel 

times (like is the case for the road users making trips at a fixed time 

of the day). 

Also in the day-to-day variation certain regular patterns can be 

identified. First of all, there is a certain regular variation between 

the various days of the week. In particular, there is a large 

difference between weekdays and weekend days. In weekend days, 

morning and evening peaks typically are absent in the travel times. 

However, events or other destinations attracting a lot of 

recreational traffic might result in peak-hour-like traffic conditions 

on some parts of the road network, during certain periods of the 

day. When mutually comparing the different weekdays, a certain 

regular pattern can be observed as well. Friday usually deviates 

most from the other weekdays. Travel times on this day typically 

have a less pronounced morning peak, and a longer lasting evening 

peak. Road users making the same trip every weekday probably will 

know this difference between Friday and the other weekdays. 



 
 
 

 

 

 
 92 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

Whether they know the mutual differences between the other 

weekdays however is doubtful. In this project, it is assumed that 

this is not the case. As a consequence, separate day-to-day 

distributions of travel time should be considered for: 

- Monday-Thursday 

- Friday 

- Saturday 

- Sunday 

For the latter three categories then only the variation between 

weeks (for the given day of the week and a given time period of 

the day) is left over as a source of uncertainty. 

However, also in the travel time variation between weeks (for a 

given day of the week) again some regular pattern can be 

identified. This regular variation over the months/seasons could be 

referred to as ‘seasonal variation’. The most important component 

in this seasonal variation is the variation due to vacation periods. In 

these periods travel times are typically lower than they are 

normally, especially in the long vacation. The morning and evening 

peaks in travel time are less pronounced, or even (almost) absent. 

Most road users will know the difference in travel times between 

vacation periods and other periods (or otherwise they will learn this 

difference in a few days time, by experience). Therefore in fact 

separate (day-to-day) travel time distributions should be considered 

for ‘normal’ periods and vacation periods. However, in view of the 

fact that vacation periods account for only a limited part of the 

year, here only (indicators derived from) the travel time distribution 

for ‘normal’ periods (excluding vacation periods) will be considered.  

At the start and the end of vacation periods just the opposite effect 

occurs: on these days traffic conditions typically are worse than 

normal, due to traffic volumes being larger (vacation rush). It is 

questionable whether much of the road users actually are able to 

take this into account in their time planning. It is very well possible 

that many road users do not realize in time that a vacation period is 

about to begin or end. (Of course this does not apply to the 

vacation traffic itself.) In this project, it is assumed that indeed the 

road users are not aware of it (in time). The travel times on the 

days concerned are therefore simply included in the travel time 

distributions relating to ‘normal’ days. 

Yet another regular pattern in the travel time variation is related to 

holidays. On holidays, morning and evening peaks in the travel 

times are typically missing. In particular due to recreational traffic, 

there might still be traffic congestion on these days however. 

Because travel times on holidays are quite similar to those on 

Sundays, in this project holidays will be considered as being 

Sundays.  

Finally, road users generally also have a certain idea of the impact 

(on travel time) of disturbing conditions like bad weather, accidents 

or road works. However, at the time at which such conditions 

manifest themselves to the road users, often it is already too late 
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(i.e. the time planning cannot be modified anymore), unless some 

information on them is received in an earlier stage. The influence of 

this kind of information is the topic of the following subsection.  

Influence of information 

If travelers have access to / are provided with information on the 

conditions on the road network, they are better able to predict their 

travel times. This results in their uncertainty (and the associated 

costs) being lower than the travel time distribution suggests. The 

information referred to is not limited to traffic information. Other 

types of information, like weather forecasts and announcements of 

road works, may play a part as well. 

Note that the influence of information is partly accounted for 

already (see above), by considering origin-destination travel time 

distributions (assuming fully informed road users, always selecting 

the shortest41 route available) next to route travel time distributions. 

This way however only the reduction of travel time variation is 

considered, leaving the other component of uncertainty reduction 

(i.e. the uncertainty reduction for given travel time distribution) out 

of account. 

The value of information is highly dependent on the point in time 

at which the information is obtained. The later the information is 

received, the lower its value (and consequently, the lower the 

reduction in the costs due to uncertainty). This is because of the 

fact that the possibilities to respond to the information decrease as 

a function of time. 

Since planned (large scale) road works are usually announced well 

in advance, and moreover, usually last for a substantial period 

(enabling the regular road users to ‘learn’ the effects on the traffic 

conditions), it does not seem ‘fair’ to include the travel times in 

situations with this kind of road works in the (day-to-day) travel 

time distribution. It is better to leave these situations out of 

account, or (preferably) consider a separate travel time distribution 

for them. Of course, for emergency repairs this is completely 

different: travel times in situations with this kind of road works 

should be included in the ‘normal’ travel time distributions.  

The reduction in uncertainty due to weather forecasts (or personal 

weather observation) could be taken into account by considering 

separate travel time distributions for different weather conditions. 

However, this would correspond to the (implicit) assumption that 

travelers have full knowledge on the differences in these 

distributions and that they are fully informed on the (future) 

weather conditions well in advance. Obviously, this is not realistic. 

Therefore, no separate travel time distributions will be considered. 

This corresponds to the implicit assumption that the road users 

have no weather related knowledge and information at all. Of 

                                                   
41 ‘shortest’ in terms of travel time 
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course, this is not realistic either, but the previous assumption is 

estimated even more unrealistic. 

It is very difficult to explicitly take into account the reduction in 

uncertainty due to information on the traffic conditions. This 

reduction is dependent on the amount of information that road 

users obtain, and on the quality of this information (and on the 

point in time at which the information is obtained, as mentioned 

before). The quality of the information refers to the extent to which 

the (future) travel times can be predicted correctly with this 

information. An important factor in this is the stability of the travel 

times. The more instable the travel times are, the lower the value of 

the information will be (i.e. the lower the reduction in the 

uncertainty in travel time and the associated costs). Here instability 

should be understood as the extent to which travel times can 

change rapidly and unpredictably. A high instability results in the 

travel times being ill predictable. 

The instability of travel times can be expressed in various ways. 

Here it is proposed to look at the probability distribution of the 

difference between the instantaneous route travel time 42  (which 

typically is the travel time obtained from conventional traffic 

information) and the actual route travel time43, for given time of 

the day. This will be done for several times of the day. Note that 

we are not only interested in the mean of the difference between 

the two travel times. In fact, this mean might be quite predictable: 

it may be related to a certain ‘regular’ variation over the day. Other 

characteristics of the probability distribution of the difference are 

important as well. If the distribution is very wide, with long tails, 

travel time instability is high.   

 

3) Increase of both fuel consumption and wear and tear 

Fuel consumption is dependent on the traffic performance (the 

total amount of vehicle-kilometers traveled) and the driving speeds. 

Obviously, total fuel consumption increases with the traffic 

performance. The relation with the driving speeds is more 

complicated. The fuel consumption is lowest for moderate speeds. 

For speeds larger than, say, 100 km/h, fuel consumption increases 

rapidly. For very low speeds, fuel consumption is larger as well. 

Also the extent of fluctuation in the driving speeds has an 

important impact on the fuel consumption. The greater these 

fluctuations are, the larger the fuel consumption will be. 

By reducing the driving speeds from 120 km/h to for example 90 

km/h (still free flow), the occurrence of busy traffic conditions 

might result in a reduction of the fuel consumption. However, if 

                                                   
42  The instantaneous travel time is computed from the current traffic velocities on the 

network. It is based on the assumption that the traffic conditions do not change while 

traversing the route.  

43 The actual travel time for a given moment in time is the travel time that is truly experienced 

by road users departing at that moment in time.  
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traffic conditions get truly congested (speeds < 80 km/h), fuel 

consumption will increase. This is not (only) because of the lower 

(average) speed itself, but because of intensification of speed 

fluctuations as well (due to the emergence of stop-and-go traffic). 

Because of this intensification of speed fluctuations, wear and tear 

of the vehicles is increased as well. Furthermore, fuel consumption 

might be increased by traffic deviating to other (longer) routes, in 

order to get around heavily congested locations. 

It may be concluded that this cost item can be taken into account 

by considering the total amount of vehicle-kilometers traveled (on 

network level or origin-destination level) and the total amount of 

lost vehicle hours relative to a reference level of, say, 80 km/h (on 

network, origin-destination, route, or road section level). It should 

be noted that this approach is not completely correct, since the fuel 

savings related to the speed reduction from 120 (or 100) to 80 

km/h are not considered. However, in literature the additional fuel 

costs due to traffic congestion are estimated at only a few percent 

of the total congestion costs at the very most (see for instance KIM, 

2009). Probably the costs related to the extra wear and tear are 

even less. It is thus not very important that the indicators to be 

used in this project very accurately represent this cost item. 

 

4) Travelers diverting or staying away  

This cost item can be addressed by considering the change in the 

number of road users. Of course a limitation of this approach is that 

the cost item can only be addressed in a relative way (i.e. 

comparing different scenarios, like the scenario without a certain 

measure and the scenario with this measure).  It is not possible to 

give an indication of the absolute value of the magnitude of this 

cost item for a given scenario, using this approach. However, this 

actually is not really a problem, since it is not really necessary for 

the purpose of this research project. 

It is not appropriate to consider the change in the number of road 

users at the level of individual road sections or routes. This way the 

results would be affected by detour making, while the costs 

associated to this are already addressed by considering the average 

travel times on the various origin-destination relations (cost item 1). 

Considering the change in the number of road users at the network 

level is not very appropriate either, since changes on different 

origin-destination relations might offset one another, resulting in 

these effects to remain unnoticed. Therefore, it seems best to 

consider the changes at the level of the origin-destination relations. 

In order to properly grasp the influence of all (systematic and 

random) variations, the numbers of road users should be 

determined over a sufficiently long period of time (i.e. at least a 

year). By considering the numbers of road users separately for 

various days of the week and periods of the day, more detailed 

information is obtained. After all, since the levels of traffic 

congestion are variable over time, the extent to which travelers 
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divert or stay away will strongly vary over time as well. More 

importantly, though, is that if all periods of the day are simply 

combined, the effect of travelers deviating from their preferred 

departure time (in order to avoid traffic congestion costs) is 

completely neglected, while there are definitely certain costs 

associated with this diverting behavior as well. This is another 

reason to consider the different periods of the day separately: this 

would visualize any possible shifts in departure times. While 

distinguishing between various days of the week and periods of the 

day thus certainly is preferable from a completeness point of view, 

it should be noted however that it would make the analyses more 

cumbersome. 

 

5) Increase of the number of accidents  

The relationship between traffic congestion and traffic accidents is 

not easy. On average, speeds are lower and mutual speed 

differences (between individual vehicles) are smaller in congested 

traffic, which will positively affect the frequency and severity of 

accidents. On the other hand, traffic density is larger, which will 

have a negative influence. More important, however, is that there 

are shock waves created in the traffic flow, in which the traffic has 

to slow down rather abruptly. This results in additional (head-tail) 

collisions. 

This cost item can be taken into account by considering the total 

amount of lost-vehicle-hours relative to a reference level of, say, 80 

km/h (on network, origin-destination, route, or road section level). 

The reasoning here is that a larger total amount of these lost-

vehicle-hours corresponds to a larger number of shock waves, 

resulting in a larger number of accidents. This is a rather rough way 

of dealing with this cost item, but unraveling the exact relationships 

between traffic conditions and accidents is not the purpose of this 

study. 

 

6) Larger load on the environment  

The emissions of harmful exhaust fumes and the depletion of fossil 

fuels are respectively strongly and fully connected to the fuel 

consumption. Since these are the most important components of 

the environmental impact of traffic congestion, this cost item can 

thus be expressed in terms of variables describing the traffic 

conditions in rather the same way as cost item 3 (see above). 

 

7) Indirect costs related to settlement behavior and logistic chains  

This cost item is strongly related to cost items 1 and 2 (and 3): The 

longer and more uncertain the travel times are (and the larger the 

fuel consumption is), the larger the negative impact on settlement 

behavior and logistic chains will be. Therefore, this cost item can be 

related to the same traffic variables as cost items 1 and 2 (and 3) 

can be related to (see above). 

 



 
 
 

 

 

 
 97 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

8) Discomfort  

The discomfort is strongly dependent on the (relative) occupancy of 

the road. Since the occupancy influences the travel speed, and 

therefore the travel time, the discomfort can be related to travel 

times. (The longer the travel times are, the larger the discomfort 

will be.) Furthermore, discomfort might be associated with 

uncertainty regarding the remaining part of the trip. Therefore, 

discomfort can be related to the uncertainty in travel times as well. 

This leads to the conclusion that the discomfort can be addressed in 

the same way as cost items 1 and 2.  

The discomfort associated to the uncertainty regarding the 

remaining part of the trip is also influenced by the amount of 

information that travelers receive: generally travelers are less 

annoyed about delay if they are informed on the extent of this 

delay (Snelder et al, 2009). For the selection of an indicator / 

indicators for the level of traffic congestion this is not that relevant 

however. 

 

Concluding observation 

 

From the considerations above, it can be concluded that all societal 

costs in fact can be related to one or more of the following few 

characteristics of the traffic conditions: 

- the average travel times (on origin-destination level), 

- the uncertainty in the travel times (on origin-destination level), 

- the number of road users (on origin-destination level), 

- the total number of vehicle-kilometers traveled (on network or 

origin-destination level), and 

- the total number of lost vehicle hours relative to a certain 

reference level of, say, 80 km/h (representing the ‘boundary’ 

between free flowing traffic states and congested traffic states) 

(on network, origin-destination, route, or road section level). 

Therefore the criterions to look for should be criterions focusing on 

these aspects. 

 

Of these five aspects, the first three are considered the most important 

ones. The fourth one is only included to properly take into account the 

additional fuel costs and environmental costs. As mentioned before, the 

additional fuel costs are only a few percent of the total congestion costs 

at the very most. Probably the additional environmental costs are of the 

same order of magnitude. The fifth aspect is included for the same 

purpose (i.e. properly representing the additional fuel costs and 

environmental costs). However, this one also has a function in 

representing the additional accident costs. Therefore, it is considered 

more important than the fourth one. The first three aspects are 

estimated even more important though. 
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3.3 Known criterions for the evaluation of traffic congestion 

3.3.1 Outline 

In this section the possibilities for defining criterion(s) for the level of 

traffic congestion are explored by considering which of such criterions 

already exist. First of all, a general overview is given of the various 

indicators that are used in practice or proposed in literature (subsection 

3.3.2). Here, also their suitability in the context of this research project 

is discussed (taking into account the findings from the previous 

section). This is followed by an overview of the norms that have been 

put on traffic congestion in the Dutch national traffic policy of the past 

few decades (subsection 3.3.3). Here not only the indicators used in 

these norms are of interest, but the limits set on these as well. After all, 

from the value of an indicator alone one cannot infer whether the 

system actually performs well or poorly (in terms of traffic 

congestion)44. For this it is necessary to have an idea on the range of 

the indicator values for which the system can be considered to perform 

well. 

 

The next section (3.4) describes the indicators finally selected. Insofar 

as the known criterions turned out to be inadequate, new or modified 

criterions were included in the selection. 

3.3.2 Indicators used in practice or proposed in literature 

In this section an overview is given of the various traffic congestion 

indicators that are used in practice, or proposed in literature. Their 

suitability for use in this research project is discussed as well. The 

indicators are considered in three groups. First, indicators (directly) 

relating to travel times, speeds or delays are discussed. After this, other 

indicators describing the quality of the traffic flow are considered. 

Although more indirectly, in a way these indicators relate to travel 

times, speeds or delays as well. Finally the indicators that do not really 

relate to the quality of the traffic flow, but rather to the amount of 

traffic, are discussed. 

 

Indicators (directly) relating to travel times, speeds or delays 

 

In practice, the total amount of lost vehicle hours (i.e. the sum of the 

delay of all vehicles, relative to a norm speed of for example 100 km/h) 

is the most common indicator for the severity of traffic congestion. 

Clearly this is not a sufficient indicator for the societal costs, since 

certain parts of these costs are completely disregarded, like those 

related to the uncertainty in travel times. For the average route velocity 

and the average travel time / delay (which are other indicators used in 

practice, representing the yearly average of the speed with which a 

                                                   
44 Striving for a ‘zero’ congestion level typically is not optimal, since the costs that must be 

made to make the last bit of traffic congestion disappear are generally much larger than the 

associated benefits (i.e. the eliminated congestion costs). 
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certain route is traversed, and the yearly average of the travel time / 

delay on a certain route, respectively45), this is no different.  

 

In the probabilistic design philosophy (see section 1.1), a widely used 

indicator for the evaluation of designs, or the mutual comparison of 

various decision options, is risk, often defined as the product of 

probability and consequence (or rather as the summation of the 

products of probability and consequence of the various possible 

outcomes). In the context of traffic congestion, the consequence 

typically would be the travel time, resulting in the risk value to 

represent the expected (or average) value of the travel time. Clearly 

then risk is not a sufficiently representative indicator for the social costs 

of traffic congestion either, again because of the fact that the 

additional costs due to the uncertainty in travel times are completely 

disregarded. 

 

If the uncertainty-related costs are given consideration, often they are 

considered separately from the costs associated with the average/total 

travel times (expressed in e.g. the number of vehicle hours lost). For 

this, a certain unreliability indicator is used. In literature, various types 

of unreliability are discerned, like capacity reliability, terminal (or 

connectivity) reliability, encountered reliability, flow decrement 

reliability, and travel time reliability (see for example Nicholson et al, 

2003). In practice the uncertainty-related costs are often addressed by 

considering the latter type of unreliability (i.e. the travel time reliability, 

or rather unreliability), since this type of reliability directly represents 

the impact on the road users, unlike some of the other types of 

reliability. 

 

As mentioned before (section 3.2.3), there is no consensus on which 

indicator(s) to use for travel time unreliability. Most unreliability 

measures used/proposed in practice relate to the day-to-day variation 

on a particular route, for a particular time (period) of the day, limited to 

workdays (sometimes by day of the week). Many different indicators 

have been proposed. These can be divided in various classes. In (Van 

Lint et al, 2008) the following categorization is given: 

- statistical range indicators, 

- buffer time indicators, 

- tardy trip indicators, and 

- probabilistic indicators. 

 

Statistical range indicators (like variance, standard deviation 46 , 

coefficient of variation, or time windows defined by expected travel 

time plus/minus a certain number of times the standard deviation) only 

consider the width of the travel time distribution. The other indicator 

                                                   
45 Both of these two indicators often are evaluated for a specific time period, usually being the 

peak or off-peak period of weekdays. 

46 In the Netherlands, it is suggested to use the standard deviation of travel times as a basis for 

the monetarization of travel time reliability effects in cost-benefit analyses of infrastructure 

projects. (See for instance Rand Europe, 2005.) 
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types focus on the tail(s) of the distribution. This way, to a certain 

extent they take into account (‘combine’) both the width and the 

skewness of the travel time distribution (since the tail is not only 

affected by the width of the distribution, but by the skewness (and 

other properties of the distribution) as well). 

 

As the name implies, buffer time indicators consider a so-called ‘buffer 

time’. This is the extra amount of time that a traveler should take into 

account in order to arrive on time, usually defined as the difference 

between the 90th or 95th percentile travel time and the average travel 

time. Tardy trip indicators focus on the extra delay (compared to the 

average travel time) incurred during the worst trips. An example of this 

type of indicators is the misery index, representing the relative dis tance 

between the average travel time of the 20% worst trips and the overall 

average travel time 47 . Probabilistic indicators finally consider the 

probability that the travel time between a certain origin and destination 

is within a certain predefined threshold or time window. Note that 

buffer time indicators and probabilistic indicators in fact are very closely 

connected. Buffer time indicators consider the buffer time for 

predefined probability of exceedance, while probabilistic indicators 

consider the probability of exceedance for predefined buffer time. 

 

Van Lint et al. (2008) propose a new indicator for travel time 

unreliability (not covered by any of the above categories), explicitly 

combining width and skew of the travel time distribution. In this 

indicator, for width and skew not the ‘classic’ statistical measures are 

used, but new metrics based on percentiles of the travel time 

distribution. This is because of the fact that the well-known statistical 

measures are sensitive to outliers in the travel time data. Indicators 

based on percentiles of the distribution are more robust in this respect.  

 

In their paper, Van Lint et al. (2008) illustrate that the various 

indicators differ significantly in judging the reliability of situations. In 

fact this is quite logical, since all these indicators depict only part of the 

large amount of information contained in the travel time distribution. 

This problem is inherent to using indicators. Another source of the 

discrepancies is the fact that part of the indicators are based on 

statistics that are sensitive to outliers in the travel time data (statistics 

like mean and variance), resulting in these indicators being sensitive to 

these outliers themselves as well. 

 

Recently Tu (2008) defined a new indicator for travel time unreliability, 

combining travel time variability and travel time instability. Tu considers 

travel time unreliability as a kind of risk: the risk with respect to 

experiencing a traffic flow breakdown (or traffic congestion), faced by 

road users. This risk is considered as a function of the traffic inflow to 

the route. Tu uses another definition of risk than the one discussed in 

                                                   
47 Other definitions of the misery index are possible as well (for example: instead of the 20% 

worst trips also the 15% or 10% worst trips might be considered, or instead of the overall 

average travel time the free flow travel time might be taken).  
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the beginning of this subsection 48 . The general concept (risk is the 

probability of outcome i times the consequence of outcome i, summed 

over all possible outcomes i) is the same, but the possible outcomes are 

defined in a different way. 

 

Tu discerns two possible outcomes: the traffic state being congested 

and the traffic state being free flow (i.e. non-congested). The 

respective travel time variabilities of these two traffic states (i.e. the 

congested travel time variability and the free flow travel time 

variability, respectively) are considered as the consequences of the two 

possible outcomes. The breakdown probability (i.e. the probability of 

the traffic state transforming from free flow into congested) and its 

complement (i.e. the probability of the traffic state remaining free flow) 

are considered as the corresponding probabilities of occurrence. 

 

From this it can be concluded that the indicator of Tu actually 

corresponds to the expected value of the travel time variability. Since 

the probabilities of occurrence are defined as the probabilities of 

breakdown and ‘no breakdown’, rather than being defined as the 

probabilities of congestion and ‘no congestion’, this expected value is 

not the overall expected value, but rather the expected value assuming 

initially free flow conditions. 

 

In fact, this is no good indicator for representing the total uncertainty. 

For one thing, this is because of the fact that the indicator does not 

take into account the possibility that traffic conditions are congested 

already (due to a breakdown of the traffic flow at an earlier moment in 

time). Secondly, one of the components of the total uncertainty is 

neglected in the indicator, namely the uncertainty regarding whether 

the traffic conditions will be congested or not. 

 

This can be illustrated with the following (theoretical) example. 

Consider a situation in which the traffic conditions are either free flow 

or congested, and variability in both cases is zero (i.e., there is only one 

possible free flow travel time, and likewise only one possible congested 

travel time). Of course the congested travel time is longer than the free 

flow travel time. The travel time unreliability according to the definition 

                                                   
48 The indicator proposed by Tu is computed as: 
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j qTTV  = Travel time variability after breakdown (i.e. in congested conditions) for a 

given inflow level inq  on route r  (computed as the difference between 

the 10th and 90th percentile travel times). 
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of Tu (i.e., the expected value of the variability) would be zero. Still, 

there is of course uncertainty involved, namely the uncertainty 

associated with the question whether the traffic conditions will be free 

flow or congested, i.e. whether one will face the free flow travel time 

or the congested one. 

 

Other indicators for the quality of the traffic flow 

 

While all the indicators above are directly related to travel times, in 

practice also indicators not directly related to travel times are used for 

describing the quality of the traffic flow. The most well-known example 

of these indicators is the ratio of traffic flow (q) and capacity (c), 

indicating the relative loading of a certain road section. In this ratio for 

q and c certain ‘representative’ values are taken. For q this for example 

could be the maximum flow rate in the governing peak hour on an 

‘average’ working day, or the flow that is exceeded a certain given 

number of hours a year (say, 30). For c it for example could be the 

average capacity in normal conditions. The indicator q/c is frequently 

used for assessing the quality of the traffic operations (also indicated as 

‘LOS’: Level of Service) on (designed/planned) road sections. The 

higher the flow-capacity ratio, the lower the level of service, expressed 

in terms of comfort, freedom to maneuver (including for example 

overtaking possibilities), freedom to drive at the desired speed, travel 

time, and predictability of travel time. A general rule of thumb is that a 

value smaller than 0.8 corresponds to good quality traffic operations 

(i.e. hardly any traffic congestion), while a value of about 1 or above 

corresponds to bad traffic operations (i.e. a substantial amount of 

traffic congestion) (AVV, 2002; Rijkswaterstaat, 2009). 

 

Another indicator that can be used for assessing the quality of the 

traffic flow is the traffic density (i.e. the amount of vehicles per unit 

length of roadway/lane). The larger the traffic density is, the lower the 

quality of the traffic operations will be. Based on traffic densities, in the 

‘Highway Capacity Manual’ (HCM) (Transportation Research Board, 

2000) six levels of service are distinguished, ranging from completely 

free flow conditions in which vehicles are virtually unaffected by each 

other (LOS A), to forced flow conditions in queues resulting from traffic 

demand exceeding available capacity (LOS F). This level of service 

classification has been widely used in planning, design and operational 

studies for several decades now. 

 

In fact, the traffic density and the flow-capacity ratio are strongly 

connected. After all, traffic density and traffic flow can simply be 

converted into one another using standard relationships from traffic 

flow theory. 

 

Yet another indicator used in practice is the ‘probability of congestion’. 

For a given road section, this indicator gives the fraction of traffic 

experiencing traffic congestion. 

 

Finally, an indicator which is commonly used in the Netherlands is the 

summation of the lengths of all traffic jams on the network, integrated 
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over time (in Dutch referred to as the ‘filezwaarte’ or ‘filedruk’). Here a 

traffic jam is supposed to exists on a road section if the speed on that 

road section is below 50 km/h. This is clearly not a good indicator, 

however, in view of the facts that: 

- The length of a traffic jam is not a good measure for the 

amount of road users involved. For this the number of lanes 

and the traffic density should have been taken into account as 

well. 

- The indicator does not differentiate between different speed 

levels (below the 50 km/h threshold), while these speed 

differences may have major consequences for the amount of 

delay incurred in a traffic jam. 

 

While all these indicators (except for the latter) certainly give relevant 

information on the quality of the traffic flow, in fact the indicators 

discussed before (i.e. those related to travel times) are better indicators 

for the societal costs, since they describe more directly the magnitude 

of the effects that actually bring about these costs. Of course, there is a 

relation between the indicators discussed in this subsection and the 

indicators related to travel times. As far as the traffic density and flow-

capacity ratio are concerned, on average it will be true that the 

(total/average) travel time and uncertainty in travel time are larger on 

road sections with higher flow-capacity ratios / traffic densities. 

However, this relation is only a very rough one. This is due to the fact 

that important factors like network structure and variations in both 

traffic demand and capacity are not reflected in the indicators flow-

capacity ratio and traffic density. Consequently these indicators cannot 

be considered substitutes for indicators directly related to travel times 49.  

 

The ‘probability of congestion’ indicator is much stronger related to the 

(total/average) travel time and the uncertainty in travel time than the 

flow-capacity ratio and traffic density. A larger probability of 

congestion generally will correspond to a larger total/average travel 

time and a larger uncertainty in travel time. This relation cannot be 

regarded as a hard and fast rule though. Therefore also this indicator 

cannot be considered a substitute for indicators directly related to travel 

times. 

 

Other indicators 

 

Beside the indicators that relate to the quality of the traffic flow, there 

are the indicators concerning the amount of traffic (which after all 

might be affected by traffic congestion as well). In the Netherlands, the 

number of vehicle-kilometers probably is the most common indicator 

for measuring the total amount of traffic. A problem related to this 

indicator is that it is not always clear how to explain an increase (or 

decrease) in the number of vehicle-kilometers. On the one hand, such 

                                                   
49 In spite of the fact that the flow-capacity ratio and traffic density are not very appropriate 

indicators for assessing the actual size of the traffic congestion problems, in design processes 

they may be useful, since they might provide the traffic engineer with information on 

underlying causes of traffic congestion problems. 
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an increase could be due to more traffic being facilitated by the road 

network, which is generally considered a positive effect (in view of the 

economical/societal benefits that are derived from the additional 

trips)50. On the other hand, such an increase could also be due to more 

road users making (larger) detours in order to avoid congested 

locations, which of course is considered a negative effect. Therefore it 

seems better to measure the amount of traffic that is facilitated by the 

road network in numbers of trips (per origin-destination relation).  

 

Brilon (2005) combined the amount of traffic being facilitated by a road 

section and the quality of the traffic flow, represented by the speed on 

this section, into one indicator (the ‘traffic efficiency’), by taking the 

product of these two. This indicator indeed is a good measure for the 

efficiency with which the potential of the existing infrastructure is 

exploited. However, it is not that appropriate as indicator for the 

societal costs of traffic congestion, since detours (made in order to 

avoid congested locations) are not negatively valued. 

3.3.3 Norms on traffic congestion in the Dutch traffic policy 

This section zooms in on the norms that have been set on traffic 

congestion in the Dutch traffic policy of the past few decades. For the 

most part, this policy is laid down in the main policy documents on 

traffic and transport of the Dutch government. Over the past few 

decades, four of these documents have been released: 

- the ‘Traffic and Transport Structure Plan’ (In Dutch: 

‘Structuurschema Verkeer en Vervoer’, abbreviated as SVV), 

published in 1979; 

- the ‘Second Traffic and Transport Structure Plan’ (‘Tweede 

Structuurschema Verkeer en Vervoer’, abbreviated as SVVII), 

released in 1990; 

- the ‘National Traffic and Transport Plan’ (‘Nationaal Verkeers- 

en Vervoersplan’, abbreviated as NVVP), drawn up in 2000; 

and finally the most recent one: 

- the ‘Mobility Policy Document’ (‘Nota Mobiliteit’, abbreviated 

as NoMo), dating from 2004. 

 

SVV (1979) 

 

In the SVV, policy objectives were based on the ‘levels of service’ as 

defined in the American Highway Capacity Manual (a classification in 

six levels of service A to F, based on the traffic density 51). For weekdays, 

LOS C was selected as the policy objective for rural areas, and LOS D 

(limit E) for urban areas (Van der Hoorn, 2007). In fact, the Highway 

Capacity Manual (HCM) classification had already been used for a long 

time in the Netherlands when the SVV was issued. As discussed before, 

the traffic density and consequentially also the HCM classification 

however are not the most appropriate indicators for expressing the 

                                                   
50 On the underlying road network such an increase however could be considered undesirable, 

in view of a possible deterioration of the traffic safety or quality of life.  

51 See the previous subsection. 
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level of traffic congestion. Indicators directly related to travel times are 

more appropriate for this. 

 

SVVII (1990) 

 

In the course of years, in the decision-making process for infrastructure 

investments it became increasingly important to map out the 

(economic) effects of alternative options quantitatively (Stembord, 

1991). Because of the somewhat ‘abstract’ qualitative nature of the 

HCM levels of service (resulting in administrators having diff iculties in 

interpreting these), a need was felt for a more intuitive indicator: an 

indicator with which it would be possible to quantify the level of traffic 

congestion. Therefore, in SVVII such a new indicator was introduced: 

the ‘congestion probability’ (discussed in the previous subsection). For a 

given road section, this congestion probability was defined as the 

fraction of all road users in a year (limited to weekdays) that is 

confronted with traffic congestion. In the computation of this 

congestion probability, within-day and day-to-day variations in the 

traffic demand were taken into account. To a certain extent, the 

variations in the capacity of the road section were taken into account as 

well.  

 

Typically, a ‘zero’ congestion probability is not opt imal: the 

infrastructure expansion needed to get rid of the last bit of congestion 

is much more costly than this last bit of congestion itself. Therefore a 

societal cost-benefit analysis was performed in order to find a norm for 

the congestion probability. In this cost-benefit analysis, improvements 

in travel time and traffic safety (i.e. the societal benefits) were 

weighted against the construction costs of new infrastructure, the 

maintenance costs of infrastructure, and the environmental effects of 

the construction of new infrastructure (i.e. the societal costs).  

 

Overall (i.e. considering all individual road sections of the main road 

network together), a congestion probability of 2% was found to be the 

economic optimum (see Figure 3.6). In the end, only for the so-called 

‘hinterland connections’ this 2% actually was selected as the norm. In 

view of budgetary restrictions, for the other roads of the main road 

network a less stringent norm of 5% was selected. (The traffic on the 

hinterland connections was considered to be of a larger economic 

value, resulting in travel time losses on these roads to be considered 

more costly than travel time losses on other roads.)  

 

It should be noted that these norms were not to be interpreted as strict 

rules to be complied with for individual road sections. In fact, they were 

rather meant as a basis for a nationwide reservation of financial 

resources and land. It was stated that for actual projects a case-by-case 

assessment of the local optimum congestion probability had to be 

performed. 
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In subsection 3.3.2 it was already noted that the congestion probability 

in fact is not the most appropriate indicator for expressing the level of 

traffic congestion. It does indicate the proportion of the road users that 

is confronted with traffic congestion, but does not give adequate 

information on the actual extent of this traffic congestion (in terms of 

attributes that are decisive for the societal costs). For this it is better to 

consider indicators (directly) related to travel times. 

 

Concerning the societal optimization from which the 2% norm was 

derived, some critical remarks can be made as well. The societal costs 

and benefits of infrastructure expansion were accounted for in a rather 

simplistic way. In reality, assessing these costs and benefits is a rather 

complex problem. First of all, as far as the delays are concerned, only 

the direct travel time losses were considered. The additional costs due 

to uncertainly in travel times were left out of account. In view of the 

fact that that these costs contribute significantly to the total costs of 

traffic congestion (see section 3.2.2), this is an important limitation of 

the analysis performed. The indirect economic costs related to the 

effects on the location choice behavior of firms were left out of account 

as well. Furthermore, the feedback process from infrastructure supply 

to traffic demand (related to the notion of the so-called ‘latent 

demand’) seems to be neglected. This feedback process refers to the 

increase in traffic demand that can be expected if traffic conditions are 

improved (as a result of infrastructure expansion). This increase results 

in both additional costs (related to an increase in the amount of traffic 

congestion) and additional benefits (related to the larger amount of 

trips being facilitated), which should have been taken into account.  

 

Another limitation of the analysis relates to the fact that certain causes 

of congestion were not taken into account explicitly (causes like 

incidents, road works, heavy traffic in weekends, etc.). These sources of 

congestion were accounted for by multiplying the calculated travel time 

losses by a factor of 2. In spite of the fact that this factor had an 

empirical basis, the accuracy of this approach is doubtful. Yet another 

limitation of the assessment was that all individual road sections were 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.6: Societal optimization of 
the congestion probability 
(Adapted from: Dienst 
Verkeerskunde, 1992) 
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considered separately (i.e. as if they were isolated from each other). 

Interactions between bottlenecks were thus not taken into account in 

the assessment. 

 

NVVP (2000) 

 

In the NVVP the indicator ‘congestion probability’ was discarded again, 

because it was considered not closely enough related to the perception 

of the travelers (AVV, 2000). It was replaced by the so-called ‘route 

speeds’ (in Dutch: ‘trajectsnelheden’), defined as the average speeds on 

motorway stretches of 30 km or longer, for the busiest hour of the day 

(averaged over all weekdays of a year). Based on feasibility, a lower 

limit of 60 km/h was selected as the policy objective for these route 

speeds. 

 

Initially, in the computations of the route speeds for future situations, 

fluctuations in traffic conditions were not taken into account. Instead, 

simply speeds for a kind of ‘representative situation’ were calculated. 

Later on, Transpute (2003) developed a model with which route speeds 

could be calculated as true averages (i.e. taking into account (part of 

the) fluctuations in traffic conditions). 

 

Note that using average speeds as indicator is in fact no different from 

using average travel times as indicator, since speed is just distance over 

time (where the distance has a fixed value).  This can be considered to 

be a better indicator than indicators not directly related to travel times, 

but, as discussed before (see section 3.3.2), it obviously is not a 

sufficient indicator for the societal costs of traffic congestion, since it 

completely neglects, among others things, the costs that can be related 

to the uncertainty in travel times. Furthermore it should be mentioned 

that the theoretical basis for the norm speed of 60 km/h seems rather 

weak. 

 

NoMo (2004) 

 

When the NoMo (i.e. the most recent policy document) was put into 

force, the policy was changed once again. The policy objective from the 

NVVP (relating to the average route speeds) was modified, and a 

completely new policy objective was added to it. This new objective 

refers to the reliability of travel times, which is considered a very 

important issue in the NoMo. In fact it is thus recognized in the NoMo 

what was stated above, in relation to the policy objective in the NVVP, 

i.e. that the average speed (or travel time) is not a sufficient indicator 

for the level of traffic congestion. By adding the policy objective 

regarding the reliability of travel times, to a certain extent the 

uncertainty in travel times is addressed as well. It should be noted 

however that this reliability policy objective rather considers the 

variability in travel time, which is not exactly the same as the 

uncertainty in travel time (as discussed in section 3.2.3). 
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For the average travel times, the following targets have been defined 

(Ministerie van Verkeer & Waterstaat, 2004): 

- On motorways, the average travel time during peak periods 

should not exceed 1.5 times the off-peak travel time. 

- On urban ring roads (a subcategory of the motorways) and 

non-motorways that are part of the main road network, the 

average travel time during peak periods should not exceed 2 

times the off-peak travel time. 

In the above, the off-peak travel times should be calculated based on 

an assumed speed of 100 km/h (except for the non-motorways). The 

factors of 1.5 and 2 are referred to as ‘travel time factors’.  

 

The less stringent norm for urban ring roads and non-motorways is 

motivated by the facts that: 

- For urban ring roads capacity expansion is often only possible 

at very high costs. 

- On urban ring roads and non-motorways, the percentage of 

regional traffic (as opposed to national and international traffic) 

is relatively high. For this regional traffic (which travels shorter 

distances) a less stringent norm results in only a few minutes 

extra travel time. 

- On non-motorways there are often elements like roundabouts, 

intersections and other elements negatively influencing the 

travel times.  

 

In fact these norms are very similar to the ‘route speed norm’ defined in 

the NVVP. However, for the urban ring roads this norm is relaxed a bit, 

while for the other motorways the norm is tightened a little. After all, 

an average travel time of 2 times the off-peak travel time corresponds 

to an average speed of 100/2 = 50 km/h (assuming an off-peak speed 

of 100 km/h), and an average travel time of 1.5 times the off-peak 

travel time corresponds to an average speed of 100/1.5 = 67 km/h 

(where the NVVP norm was 60 km/h). It should be noted however that 

the NVVP norm referred to the busiest hour of the day, whereas the 

new norms apply to peak periods as a whole (being longer than just 

one hour). With this in mind, the 67 km/h norm in the NoMo actually 

might even be less stringent than the 60 km/h norm in the NVVP. 

 

Next to these norms on route level, the NoMo also defines a norm on 

the level of the main road network as a whole. By 2020, the total 

amount of vehicle hours lost in traffic jams should be back at the level 

of 1992 (Ministerie van Verkeer & Waterstaat, 2006). In this context, 

traffic jams are to be understood as traffic with a speed below 50 km/h 

(Savelberg, 2008).  

 

For the reliability of travel times, in the NoMo a probabilistic indicator 

(see section 3.3.2) is used. The policy objective states that 95% of all 

trips during the peak periods should be in time (Ministerie van Verkeer 
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& Waterstaat, 2004)52. For longer distance trips (above 50 km) ‘in time’ 

is defined as arriving 20% earlier or later than the expected travel time 

at the most. (In other words: the realized travel time should be within 

the interval bounded by respectively 80% and 120% of the expected 

travel time.) For shorter distance trips, ‘in time’ is defined as arriving 

within 10 minutes of the expected travel time (i.e. arriving 10 minutes 

early or late at the most). In these definitions, the ‘expected travel time’ 

is defined as the median of the travel time distribution. 

 

Van Lint et al. (2008) criticize the arbitrary nature of the 

parameterization of these norms (i.e. the arbitrariness of the 95% level 

and the 20% and 10 minutes thresholds). If these parameters are 

chosen differently, the results might give a very different picture of the 

travel time reliability. The choice for using a probabilistic indicator 

(rather than one of the other types of reliability indicators discussed in 

section 3.3.2) to a certain degree is arbitrary too. In combination with 

the fact that these different types of indicators differ significantly in 

judging the reliability of situations, this makes the norms rather 

arbitrary as well. 

 

Consequently, the value of these norms as policy criteria in fact is fairly 

limited. This can only be improved by making the norms more objective 

(both regarding the selection of an indicator and the parameterization 

of the norm). For this, it will be necessary to improve the knowledge on 

how the costs of uncertainty in travel times actually are related to the 

characteristics of the travel time distribution. Ideally, the 

parameterization of the norms should be based on a societal cost-

benefit analysis. However, from the discussion in relation to the SVVII it 

might be clear that such a cost-benefit analysis is very complex indeed. 

Furthermore, for different parts of the motorway network (the results 

of) this cost-benefit evaluation might well be rather different. 

 

3.4 Selected criterions 

From the previous considerations it is clear that traffic congestion 

causes costs to society in several ways. The various cost items are 

related to the characteristics of the traffic congestion in different ways. 

One might be inclined to say that, ideally, the level of traffic congestion 

should be expressed in one single indicator, being the total amount of 

societal costs. However, for this it would be necessary to monetarize all 

individual cost items, which is not easily accomplished (since it is not 

entirely clear how the costs exactly relate to the characteristics of the 

traffic congestion). Actually, it (i.e. considering the level of traffic 

congestion in terms of total costs) would not be very insightful either. 

For these two reasons, it is more appropriate to express the level of 

traffic congestion in variables describing the traffic conditions. Since the 

different cost items are related to the traffic conditions in different 

                                                   
52 In this norm ‘all trips’ refers to the complete set of all trips on the entire main road network. 

The norm is thus not applicable to individual routes, roads or road sections (Rijkswaterstaat, 

2009)  



 
 
 

 

 

 
 110 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

ways, one indicator is not sufficient then. Instead, a set of indicators 

needs to be considered. Based on the considerations in the previous 

sections, the following indicators were selected: 

 
I. The 90th percentile travel time (on origin-destination level) 

This indicator was selected because of the fact that it (to a certain 

degree) implicitly comprises three features that are very important 

for the level of the societal costs of traffic congestion, namely the 

average travel time, the variance of the travel time and the 

skewness of the travel time distribution. After all, for each of these 

three features it applies that the larger its value is (holding the 

other two constant), the higher the 90 th percentile travel time will 

be. The 90th percentile travel time therefore is a reasonable 

indicator for (part of) the societal costs due to traffic congestion.  

 

The 90th percentile travel time is made dimensionless by dividing it 

by the free flow travel time. This has two main advantages: 
- it puts the level of traffic congestion into perspective, and 
- it makes the values on the different origin-destination 

relations better comparable. 

The latter allows to plot the values for the various origin-

destination relations in one diagram (think of a bar chart). This 

helps to facilitate the analyses. 

 

In view of the arbitrariness of the choice for the 90th percentile 

travel time, it seems advisable to consider some other percentiles 

as well. (For example the 80th and 95th percentile travel times). 

 
II. The average travel time (on origin-destination level) 

The 90th percentile travel time (and the other two percentile travel 

times considered) represent only a very limited part of the 

information contained in the travel time distribution (and 

consequently give only limited insight into the amount of 

additional travel time and the uncertainty in travel times). 

Therefore it is necessary to also consider some other indicators for 

these two aspects53. One of the indicators selected for this is the 

average travel time (on origin-destination level). Again this 

indicator is made dimensionless by dividing it by the free flow 

travel time. 

 
III. The median travel time (on origin-destination level) 

In section 3.3.2 it was discussed that the classic statistics, like 

average and variance, are sensitive to outliers in the (measured or 

simulated) travel time data, which is a drawback of these 

indicators. This is not the case for indicators based on percentile 

values of the travel time distribution (provided that not the most 

                                                   
53 A better approach might be to consider the travel time distribution as a whole (by visual 

inspection). This way no information is lost. However, comparison between (many) different 

situations is more difficult then. The advantage of using indicators is that these allow for quick 

comparisons. Therefore it was decided to hold on to the strategy of using indicators. It is 

however advisable to give some (limited) consideration to the distribution as a whole as well, 

in order to avoid missing important information. 
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extreme percentiles are considered of course). Therefore besides 

the average travel time also the median travel time (or 

equivalently, the 50th percentile travel time) has been included in 

the set of indicators. Of course this could make one wonder why 

then the average travel time still is included in the set of indicators. 

This can be explained by the fact that the median travel time in 

fact is not an ideal indicator either. After all, the upper (or lower) 

half of the travel time distribution can significantly improve or 

deteriorate, without being ‘detected’ by the median (where the 

average would be affected). In view of both the average and the 

median having their individual drawbacks, it was decided to 

consider both of them in this study (i.e. one as ‘safeguard’ for the 

other). Also the median is made dimensionless by dividing it by the 

free flow travel time. 

 
IV. The width of the travel time distribution (on origin-destination 

level) 

In section 3.2.3 the variation in the travel times was identified as 

an important factor (though not the only one!) for the travel time 

uncertainty. Therefore the width of the travel time distribution was 

selected as an indicator too. In order to avoid sensitivity for outliers 

in (measured or simulated) data, this width is not defined in terms 

of the classic statistics (like standard deviation, variance or 

coefficient of variation), but rather as the difference between the 

90th and 10th percentile travel time values. Also this width indicator 

is made dimensionless by dividing it by the free flow travel time. 

 
V. The skewness of the travel time distribution (on origin-

destination level) 

As indicated in section 3.2.3, also the skewness of the travel time 

distribution might be an important factor for the costs associated 

with the uncertainty in travel times. For that reason, an indicator 

representing this skewness was selected as well. This indicator is 

defined as the quotient of the difference between the 90 th and 50th 

percentile travel time values and the difference between the 50 th 

and 10th percentile travel time values (i.e. (TT90—TT50)/ (TT50—

TT10)). The choice for a definition in terms of percentile values 

(rather than using the classic skewness statistic) again was 

motivated by the wish to avoid sensitivity to outliers in (measured 

or simulated) data. 

  
VI. The distribution of the difference between the instantaneous and 

actual route travel time (on route level) 

In section 3.2.3 it was explained that the instability of the travel 

times is an important factor for the travel time uncertainty. In case 

of a higher travel time instability the predictive power of 

traffic/travel information (which pertains usually to the 

instantaneous situation only) will be lower, resulting in the travel 

time uncertainty to be larger (for the same level of travel time 

variability). In the same section the distribution of the difference 

between the instantaneous and actual route travel time was 

identified as an appropriate basis for evaluating this travel time 

instability. 
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In fact, one would rather prefer to use a real indicator for this (i.e. 

to express the instability in a single number). However, it is 

difficult to define such an indicator without risking losing 

important information contained in the distribution. (As noted in 

section 3.2.3, we are not only interested in the mean of this 

distribution, since this mean actually might be related to a rather 

regular, predictable variation over the day). That is why it was 

decided to consider the distribution as a whole. Because of the fact 

that this results in the analyses to be more demanding (after all, 

comparing whole distributions is much more laborious than 

comparing indicator values), the travel time instability is evaluated 

only for a limited number of times of the day. 

 
VII. The average number of road users (on origin-destination level) 

This indicator was selected as a measure for the costs due to 

travelers diverting (to other transport modes, destinations, or 

departure times) or staying away because of the traffic congestion 

(or the other way around: as a measure for the benefits derived 

from additional trips induced by an improvement of the traffic 

conditions). It should be evaluated separately for the peak periods, 

the ‘shoulders’ of the peak periods, and the off-peak periods, in 

order to be able to show shifts in departure time period. 

 
VIII. The total number of vehicle-kilometers traveled (on network level) 

In order to allow for the additional fuel consumption and the 

environmental effects of the traffic congestion as well, the total 

number of vehicle-kilometers traveled has been included in the set 

of indicators, in combination with the total number of lost vehicle 

hours (relative to a certain reference level; see below).  

 
IX. The total number of lost vehicle hours relative to a reference level 

of 80 km/h 54 (on network level) 

In combination with the indicator above, this indicator was 

included as a measure for the additional fuel consumption and the 

environmental effects of the traffic congestion. It was also included 

however to allow for the additional accident costs due to traffic 

congestion (based on the line of reasoning that a larger amount of 

congestion hours corresponds to a larger amount of shock waves, 

which in turn corresponds to a larger number of (congestion-

related) accidents; see section 3.2.3). 

                                                   
54 Note that normally, in Dutch traffic policy a reference level of 100 km/h is used for the 

number of lost vehicle hours. In such cases, this indicator is used as a measure for delays, 

however, whereas here it is used as a measure for additional fuel consumption, accident costs 

and environmental effects. (Delays are considered by means of other indicators.) In this case, 

a reference level of 100 km/h is not appropriate. Rather, a reference level is required which 

can be considered to represent the ‘boundary’ between free flowing traffic states and 

congested traffic states. For this, a level of 80 km/h is taken. 
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All indicators on origin-destination level (I–V and VII) or route level (VI) 

should be considered for several origin-destination relations / routes 

(well distributed over the network, and comprising both shorter and 

longer distances), and for various times of the day.  

 

Without specifying to which travel time distributions the indicators I to 

V (inclusive) relate, they of course do not have a real meaning yet. 

Based on the considerations described in section 3.2.3, it was decided 

that the following distributions should be considered: 

 
i. The global (overall) travel time distribution (i.e. the travel time 

distribution for all moments in time combined, comprising both the 
day-to-day variation and the within-day variation), assuming a 
fixed route choice (i.e. assuming that the road users in all 
situations hold on to their standard/intended routes). 

 
ii. The global (overall) travel time distribution (i.e. the travel time 

distribution for all moments in time combined, comprising both the 
day-to-day variation and the within-day variation), assuming an 
optimal route choice (i.e. assuming that the road users at all times 
are able (and willing) to select the route that will yield them the 
shortest travel time)55. 
 

iii. The day-to-day travel time distributions (i.e. the travel time 
distributions for fixed times of the day, compromising only the 
day-to-day variation), assuming a fixed route choice (i.e. assuming 
that the road users in all situations hold on to their standard 
routes). 

 
iv. The day-to-day travel time distributions (i.e. the travel time 

distributions for fixed times of the day, compromising only the 
day-to-day variation), assuming an optimal route choice (i.e. 
assuming that the road users at all times are able (and willing) to 
select the route that will yield them the shortest travel time) 55. 

 

All of these distributions are defined with respect to time (as opposed 

to being defined with respect to trips), a choice that was based on the 

considerations in section 3.2.3. Distribution types iii and iv are defined 

separately not only for the different times of the day, but for the 

different categories of the day of the week as well (Monday-Thursday, 

Friday, Saturday, and Sunday). Here public holidays should be 

considered as Sundays. Vacation periods and periods with large-scale 

road works should be excluded from the day-to-day distributions56.  

                                                   
55 This travel time distribution is constructed by selecting for each ‘measurement’ time interval 

the shortest travel time available (among the travel times of the various alternative routes on 

the origin-destination relation). Note that the indicators in this case are made dimensionless 

by dividing the indicator value by the smallest free flow travel time (considering all routes 

between the origin and destination). 

56 In section 3.2.3 it was argued that it seems not ‘fair’ to include these periods in the day-to-

day travel time distributions, since this would result in the uncertainty in the travel times to be 

overestimated. Obviously, it would even be better (though more time-consuming) to consider 

separate day-to-day travel time distributions for these periods (rather than just leaving them 

out of account). 
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In section 3.3.1 it was indicated that it is desirable to have some 

reference values for the indicators considered (indicating when the 

traffic system can be considered to perform well), since striving for a 

‘zero’ congestion level typically is not optimal. For this in the previous 

section the norms put on traffic congestion in the Dutch traffic policy 

were considered. It turned out that the theoretical basis for the 

parameterization of these norms actually seems to be rather weak. It 

was discussed that this parameterization in fact should be based on a 

comprehensive societal cost-benefit analysis. However, it is not within 

the scope of this study to find the societal/economical optimum. 

Therefore, the desired reference values cannot be given here. 

  

3.5 Empirical relations between the average travel time 

and other indicators based on travel time statistics 

In various empirical studies, strong relationships are found between the 

average travel time (or the average delay, corresponding to the 

difference between the average travel time and the free flow travel 

time) and other indicators based on the travel time distribution. This 

section discusses these findings (subsection 3.5.1) and their implications 

for this research project (subsection 3.5.2). 

3.5.1 Empirical evidence suggesting the existence of relationships 

between the average travel time and other travel time statistics 

Van Toorenburg (2003), Rand Europe (2004) and Margiotta (2009) all 

found empirical evidence suggesting the existence of certain 

relationships between the average travel time (or delay) and other 

indicators based on travel time statistics. Below, the findings of these 

different researchers are briefly discussed (one-by-one). 

 

Van Toorenburg (2003) plotted the 85th percentile delay against the 

average delay (both in the busiest hour) for 36 routes of about 30 

kilometers throughout the Netherlands, and found a rather strong 

relation between these two (see Figure 3.7). It should be noted that the 

existence of a positive interdependency in itself is of course quite 

logical. After all, a larger 85th percentile value indicates that large delays 

do occur more frequently, which will be reflected in the average value 

as well.    

 

From the figure it is apparent that the differences in average delay 

between the different routes are considerably smaller than the 

differences in 85th percentile delay. Each additional minute 85 th 

percentile delay roughly corresponds to 0.6 minutes additional average 

delay. (Or formulated the other way around: each additional minute 

average delay roughly corresponds to 1.75 minutes additional 85 th 

percentile delay.) From this it can be concluded that a larger average 

delay and a larger (day-to-day) variability in the delay go hand in hand. 

From the figure, this relation seems to be fairly strong. 
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The existence of this relationship between average delay and variability 

in delay is not surprising. Larger traffic loads generally do not only 

result in longer average travel times, but also in an increased sensitivity 

to disturbances. This latter causes the travel time variability to be larger 

as well. In addition, the existence of a speed limit might play a role. 

Due to this speed limit, the travel time distribution is bounded to the 

left. Because of this, an increase in variability generally corresponds to 

the travel time distribution extending further to the right, which on its 

turn corresponds to a larger average value. 

 

Based on the apparent strength of the relationship, and given the fact 

that the data points represent a wide variety of circumstances (rural 

roads versus urban roads, roads with much freight traffic versus roads 

with little freight traffic, etc.), Van Toorenburg concludes that it will not 

be easy to attain a state that deviates from this relation (by taking 

measures). 

 

In a research project of Rand Europe (2004) comparable relations were 

found. This can be illustrated with Figure 3.8 and Figure 3.9, showing 

empirical data for 212 routes on various parts of the Dutch main road 

network 57 , for the morning and evening peaks (7-9am and 4-6pm, 

respectively). 

 

Figure 3.8 shows plots of two speed percentiles against the ‘average 

speed’ (computed as travel distance over average travel time), based on 

data for 154 weekdays in 2002 58. The 10th percentile speed and the 

‘average speed’ (corresponding to the 90 th percentile travel time and 

the average travel time, respectively) are clearly related to each other. 

Lower ‘average speeds’ coincide with lower 10 th percentile speeds. 

From the fact that the data points are gathered within a fairly narrow 

                                                   
57 These are routes of variable lengths. The distribution of these lengths corresponds well to 

the distribution of travel distances observed in reality on the main road network. 

58  Both the speed percentiles and the average travel time refer to the day-to-day distribution 

of the travel times. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.7: Relation between 85th 
percentile delay and average delay 
(in the busiest hour) for 36 routes of 
about 30 kilometers throughout the 
Netherlands 
(Adapted from Van Toorenburg, 
2003) 
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band59, this relation can be concluded to be fairly strong, just like the 

relation between the average and 85 th percentile delay found by Van 

Toorenburg. 

 

In contrast to the 10th percentile speed, the 90th percentile speed 

(corresponding to the 10th percentile travel time) apparently is not that 

strongly related to the ‘average speed’. In all cases the 90 th percentile 

speed had a fairly large value (within the ‘free flow domain’), 

irrespective of whether it concerned a situation with a high ‘average 

speed’ or a situation with a low ‘average speed’. 

 

Combining the information provided by the two diagrams, it can be 

concluded that the width of the speed distribution strongly increases 

with decreasing ‘average speed’. Put differently, a larger average travel 

time and a larger travel time variability are clearly linked. 

 

 
 

                                                   
59 It should be noted however that for low speeds, a narrow bandwidth in terms of speed 

corresponds to a much larger bandwidth in terms of travel times. 

60 all speeds corrected for differences in speed limit 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.8: Relationships between 
the ‘average speed’ and the 10th 
(above) and 90th (below) percentile 
speed respectively60  
(Adapted from Rand Europe, 2004) 
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Figure 3.9 shows another diagram from the same research project. In 

this diagram, the ‘average speed’ is plotted against the travel time 

reliability indicator used in the NoMo (i.e. the percentage of trips 

arriving within certain bounds of the median travel time). From the 

diagram it can be concluded that there is some interdependency 

between these two variables. On average, a lower ‘average speed’ (i.e. 

a larger average travel time) corresponds to a lower percentage of trips 

being realized ‘in time’ (indicating that extreme travel times occur more 

frequently). However, this relationship is not extremely strong: a 

substantial part of the variation in the NoMo indicator remains 

unexplained (in spite of the fact that a correction had been applied for 

the variation in route length, which is another important explaining 

variable). 

 

 
 

In a research project conducted in the United States (see Margiotta, 

2009), similar results were found as well. In this research project, a 

large empirical data set for 51 (relatively short63) urban freeway sections 

in the United States was analyzed. For all these sections, various 

indicators for the day-to-day travel time reliability in the morning or 

evening peak were calculated, as well as the average travel time. For 

part of the sections, the indicators were calculated both for a period 

before implementing a certain measure (like ramp meters or an 

aggressive incident clearance program) and for a period after this 

implementation.  

 

Based on a statistical analysis on the calculated indicator values, 

Margiotta concluded that all considered indictors could be predicted as 

a function of the average travel time index (the average travel time 

divided by the free flow travel time). Figure 3.10 shows one of the 

relationships that were found. In this figure, the 95 th percentile travel 

time index (i.e. the 95th percentile travel time divided by the free flow 

travel time) is plotted against the average travel time index, for all 

                                                   
61 corrected for differences in speed limit 

62 corrected to a standard route length of 20 km 

63 on average about 7 km long 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.9: Relation between the 
‘average speed’61 and the NoMo 
reliability indicator (the percentage 
of trips ‘in time’, i.e. with a travel 
time within +/- 10 minutes from the 
median) 62 
(Adapted from Rand Europe, 2004) 
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freeway sections and all years included in the data set. The relation 

closely resembles the relation between the 85 th percentile delay and the 

average delay found by Van Toorenburg (Figure 3.7). 
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3.5.2 Implications for this research project 

 

The empirical findings discussed above might give the impression that it 

is in fact relatively easy to take into account the inherent variability in 

traffic conditions when evaluating traffic congestion (for example in the 

context of comparing the scenarios with and without a certain 

measure, in order to assess the benefits of this measure). Compared 

with the traditional approach, in which this inherent variability is not 

considered in a systematic way, the only extra step that seems 

necessary is to calculate some additional travel time statistics (like 

percentile values, variance and skew) from the ‘average’ travel time 

calculated with a traditional model, using the empirical relations 

discussed above (i.e. the empirical relations between the average travel 

time and all the other travel time statistics). 

 

In reality however it is not so simple. This is due to the following 

reasons: 

 

1) For most of the empirical relations between the average and the 

other statistics, the good quality of the fit is mainly achieved in 

the domain of low congestion (corresponding to low average 

travel times / delays, or, equivalently, high average speeds), 

where most of the data points are found. For the part of the 

data points which represent situations with heavier congestion 

(i.e. higher average travel times or lower average speeds), the 

quality of the fit is much lower. For these situations the 

unexplained variation is large. Due to this unexplained 

variation, it is uncertain to which extent the effects of measures 

will follow the fitted relationships. This means that the empirical 

relations are not accurate enough to predict all other effects of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 3.10: Relation between 95th 
percentile travel time index and 
average travel time index in the 
morning/evening peak, for a large set 
of freeway sections in the United 
States  
(Source: Margiotta, 2009) 
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a measure from its effect on the average only. If the effect on 

the average is small compared to the unexplained variation, it 

cannot even be inferred with certainty whether the other 

statistics will be affected positively or negatively. 

 

2) Even if the empirical relations would have fitted perfectly to the 

data from which they have been derived (i.e. without any 

unexplained variation), it could not be excluded that the effects 

of certain measures would ‘break’ these relations. 

 

3) The ‘average’ travel time predicted by a traditional calculation 

model is typically not a real average travel time (including the 

effects of all sources of variability), but rather a kind of 

‘representative’ travel time (computed by performing a ‘point 

calculation’ for representative traffic demand and supply 

conditions, not taking into account variability in traffic 

conditions). Of course these two travel times are not equal to 

one another. The real average most likely will be higher than 

the ‘representative’ travel time, since in the computation of the 

latter disturbances (like accidents) are not taken into account. 

This means that all the empirical relations discussed above in 

fact cannot be used, as these have been derived for real 

averages. These empirical relations can thus only be used if real 

averages are calculated first (rather than ‘representative’ travel 

times). If these real averages are computed there is no point 

anymore in using the empirical relations however, since it takes 

only a small extra effort to also directly calculate the other 

travel time statistics if those real averages are computed. 

 

One might wonder whether it would not be possible to 

calculate the real average travel time directly from the 

‘representative’ travel time (after which the other travel time 

statistics could be computed using the empirical relations 

discussed above), using an empirical relation between these 

representative and real average travel time. The existence of 

such a relation is to be doubted however. Based on his study 

Margiotta claims that the average travel time index is 15 to 

20% larger than the ‘recurring only’ travel time index (a kind of 

‘representative’ travel time index). Information on the quality of 

this relation (i.e. the extent to which practical situations deviate 

from this relationship) is unfortunately not provided, however. 

 

In the research project of Rand Europe (2004), the distribution 

of the ‘representative’ travel times (calculated with a model) 

over the various road sections considered in that project 64 was 

compared with the distribution of the average travel times over 

the same road sections. These two distributions turned out to 

be rather different, indicating that ‘representative’ travel times 

and average travel times indeed may differ significantly. Rand 

                                                   
64 Please note that in contrast to (practically) all other distributions considered in this project, 

this is not a distribution over various moments in time, but over various sections in space.  
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Europe has not attempted, however, to find a proper relation 

between the two.  

 

Even if there would be some rough relation between 

‘representative’ and average travel times, it would not be 

preserved in situations in which certain types of measures are 

taken. Consider for example incident management measures 

(measures aimed at clearing the road as soon as possible after 

the occurrence of an incident). These measures will improve the 

average travel time (and other indicators), while having not any 

effect on the ‘representative’ travel time. One could also think 

of measures that improve the ‘representative’ situation but 

increase the traffic systems’ sensitivity to disturbances, resulting 

in the average travel time to be increased. 

 

4) From research results of Van Lint et al (2008) it can be 

concluded that the relationships between different travel time 

statistics may be different for different periods of the day (i.e. 

the off-peak part of the day, the different shoulders of the peak 

periods, and the central parts of these peak periods). Although 

not considered in their investigation, this might also be the case 

for the relationships between the average and the other 

statistics. This is not reflected in the empirical relations 

discussed above. 

 

5) In earlier sections it turned out that in order to satisfactorily 

describe the extent of traffic congestion, besides indicators 

relating to travel time distributions some other types of 

indicators should be considered as well. Also for these 

indicators we are not interested in a ‘representative’ value 

(calculated in the traditional way), but rather in a value in 

which all sources of variability are reflected, which might be 

significantly different. One of the indicators selected in section 

3.4) cannot even be obtained from a ‘representative’ 

calculation: in order to evaluate the travel time instability we 

want to consider the probability distribution of the difference 

between the instantaneous and actual route travel time 

(indicator VI), while a ‘representative’ calculation only provides 

us with a single (‘representative’) value for this. Obviously, the 

empirical relations discussed above cannot offer solutions here.  

 

From the above it can be concluded that the empirical relations found 

in literature certainly provide some relevant information (especially that, 

on average, a larger average delay and a larger travel time variability go 

hand in hand), but that they do not remove the need to consider the 

various sources of variability in a more explicit way when calculating 

the extent of traffic congestion. 

 



 
 
 

 

 

 
 121 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

4. Quantification methodology 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.1 Introduction 

Now that we discussed the basic (probabilistic) mechanisms behind the 

traffic congestion phenomenon, and explained which indicators for 

traffic congestion should be considered, we can explain the reasoning 

behind the selection of the method that was used to address the main 

research objective. 

 

First of all we bring the main research objective back to mind: 

‘To reveal what kind of additional or revised insights can be obtained 

from evaluations of the traffic system’s performance (in the context of 

considering taking strategic measures to alleviate congestion) when the 

inherent variable nature of daily traffic congestion on the motorway 

network is explicitly taken into account. (As opposed to the insights 

obtained by evaluations according to the more ‘traditional’ approach, 

in which only a kind of ‘representative’ situation is evaluated.) ’ 

 

Two different types of such additional (or revised) insights are 

distinguished. Firstly, we might obtain new insights into the relative 

importance of the various primary sources of traffic congestion  (like 

nominal demand levels exceeding nominal capacities, intrinsic variations 

in human travel or driving behavior, adverse weather conditions, 

incidents, etc.). These insights (referred to as ‘insights of type A’) 

typically cannot be obtained with the ‘traditional’ evaluation approach, 

since most of these primary sources are not even considered then. Yet 

these insights can be quite valuable, by indicating at which of these 

primary sources measures should be directed in order to alleviate traffic 

congestion most effectively.  

 

The second type of insights (referred to as ‘insights of type B’) relates 

to the effectiveness of specific measures. If we assess the effectiveness 

of measures according to the ‘new’ approach (i.e. based on the 

indicators defined in chapter 3, and taking into account all sources of 

variability discussed in chapter 2), we might very well obtain results 

that extend, refine, or revise the insights obtained from a ‘traditional’ 

assessment (focusing on a kind of ‘representative’ situation). 

 

These two types of additional insights are considered in two separate 

parts. In the first part, it is demonstrated that new insights might be 

obtained into the relative importance of the various primary sources of 

traffic congestion (Figure 4.1). Here a given traffic system is considered 

‘as it is’, meaning that we do not consider the effects of measures yet. 

In the second part, an example of a modification to this traffic system is 

considered (i.e. a measure aimed at alleviating traffic congestion). For 

this measure it is analyzed whether – and if so, in what way – an 
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assessment of its effectiveness according to the ‘new’ approach yields 

different conclusions than an assessment according to the ‘traditional’ 

approach. This is shown schematically in Figure 4.2. 

 

For the analyses that need to be performed for these two parts, different 

types of methods could be used. From chapter 2 and 3 it might be clear 

that methods based on qualitative reasoning are not adequate, because 

of the complexities involved (such as the non-linearity in the interaction 

between demand and supply, the network effects of traffic congestion 

and the interdependencies between different sources of variability). In 

order to properly grasp these complexities, quantitative analyses will be 

needed. The selection of a quantification methodology for the first part 

of the analyses (relating to the insights of type A) is discussed in section 

4.2. Next, section 4.3 considers the selection of a methodology for the 

second part (relating to the insights of type B). After that, these 

methods are further elaborated. 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.1: Schematic representation 
of the way in which the additional 
insights of type ‘A’ (i.e. into the 
relative importance of the various 
primary sources of traffic congestion) 
are demonstrated 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 4.2: Schematic representation 
of the way in which the additional 
insights of type ‘B’ (i.e. into the 
effectiveness of a specific measure) 
are demonstrated 
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4.2 Methodology for the illustration of insights of type A 

This section discusses the selection of a quantification methodology for 

the illustration of the acquisition of new insights into the relative 

importance of the various primary sources of traffic congestion (i.e. 

their relative contribution to the performance indicators selected in 

chapter 3). Two main categories of methods can be identified for this: 

analysis of empirical data and model-based analysis. 

 

Examples of possible strategies that are based on analysis of empirical 

data could be: 

- Grouping the empirical data for similar circumstances (with 
respect to the various primary sources of congestion) in clusters, 
after which the average performances per cluster (expressed in 
terms of the indicators selected in chapter 3) can be mutually 
compared in order to find the relative impacts of the various 
primary congestion sources. 

- Fitting statistical relations to the data, relating the traffic 
system’s performance (in terms of the indicators defined in 
chapter 3) to the different primary sources of traffic congestion.  

 

Examples of possible strategies that are based on model-based analysis 

could be: 

- Deriving an analytical model, describing the relationships 
between, on the one hand, variables that describe the various 
primary sources of traffic congestion, and, on the other hand, 
the performance indicators defined in chapter 3. 

- Repeatedly performing a Monte Carlo series of traffic 
simulation model runs, each time omitting one of the primary 
sources of traffic congestion, in order to assess its influence on 
the indicators defined in chapter 3.  

 

The main advantage of using empirical data is that these data represent 

exactly what reality is like (aside from measurement errors and 

inaccuracies, of course), while models do not. Models typically are a 

simplification of reality, meaning that they are usually incomplete and 

even erroneous to a certain extent. In spite of this strong argument for 

using empirical data analysis, yet the model-based methodology was 

selected, because of the following important considerations: 

- The data that would be required for the empirical analyses will 
probably be partially unavailable. This relates to data describing 
the status of some of the primary congestion sources. If a 
model-based method is used, such data unavailability is less 
problematic. 

- Empirical data may be distorted by trends in the demand levels 
and changes in the supply characteristics (such as the realization 
of additional infrastructure, or the implementation of traffic 
management measures). 

- It is difficult to properly isolate the individual influences of the 
various primary congestion sources from empirical datasets, 
particularly because some of these sources are interdependent 
(see chapter 2). When a model-based method is used, the 
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different primary sources can easily be individually ‘switched 
off’. 

 

Note that by opting for a model-based methodology, the following 

drawbacks of using a model are accepted (besides the fact that models 

are a simplification of reality, as was already mentioned above):  

- Developing a model in which the various sources of variability 
are appropriately accounted for (if no suitable existing model 
is found) will be a time-consuming task. 

- Models require inputs and parameter values, which might be 
difficult to obtain. 

 

It should be noted, however, that not too much importance should be 

attached to the latter drawback. This is because of the fact that it is not 

intended here to come up with firm quantitative inferences with respect 

to a specific existing situation. Instead, it is only aimed for to illustrate 

the gain of any possible new insights. The only requirement is then that 

the situation considered could have been a real-life situation. 

Consequently, all inputs and model parameters can be given any value 

within the range in which they occur in reality. 

 

After the choice for a model-based method, it still had to be decided 

what type of model was to be used. At the most rudimentary level, we 

can make a distinction between analytical and numerical techniques. 

From chapter 2 it is evident however that the problem is too complex 

to be addressed in an analytical way, implying that a numerical method 

had to be used.  

 

If opting for a numerical methodology, using a traffic simulation model 

is the most obvious choice (since this kind of models has a good 

capability in handling the complexity involved). The different sources of 

variability (discussed in chapter 2) could be accounted for in such a 

model by randomizing the various input variables and model 

parameters. For this purpose the Monte Carlo method can be used. 

 

Two main categories of traffic simulation models can be distinguished: 

microscopic models and macroscopic models. In microscopic models all 

vehicles are modeled separately, while in macroscopic models traffic 

flows are modeled at an aggregate level. Accordingly, the output of 

microscopic models is much more detailed. The price paid for this, 

however, is a much longer calculation time per simulation run. In view 

of the facts that a large number of simulation runs have to be 

performed in order to obtain results in which the different variabilities 

are adequately reflected, and that a whole network is to be simulated, 

this long calculation time in fact makes microscopic simulation models 

unsuitable for the task. In addition to this, we are actually not really 

interested in the detailed results of a microscopic simulation. 

Aggregated results at the level of traffic flows are sufficient to calculate 

the performance indicators selected in chapter 3. 

 

Another important reason for using a macroscopic model is that in this 

type of models all macroscopic supply characteristics of road sections 
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(such as capacities) are inputs to the traffic simulations. This makes it 

possible to vary these characteristics, which is essential for the research 

tasks at hand. In microscopic models, by contrast, these macroscopic 

supply characteristics are not inputs, but outputs of the simulations. If 

such a model would be used, the supply effects of the different sources 

of variability would have to be accounted for by varying the parameters 

of the microscopic traffic behavior. This would be much more difficult, 

however. In addition, one should note that in microscopic simulation 

models, demands and capacities are randomly varying by nature65. For 

the research task at hand this is undesirable. After all, we want to be 

able to ‘deactivate’ the random fluctuations in the demands and 

capacities, in order to reveal their relative impacts on the congestion 

indicators. In macroscopic traffic simulation models this problem does 

not exist, since these are deterministic in nature.  

 

Macroscopic traffic simulation models come in all shapes and sizes. In 

section 4.4 it is discussed what requirements a model must meet for the 

task at hand. Subsequently, in section 4.5 existing models specifically 

designed for addressing the variability in traffic conditions are 

considered. Here it is discussed to what extent these models meet the 

requirements set in section 4.4. 

 

4.3 Methodology for the illustration of insights of type B 

This section discusses the selection of a methodology for the illustration 

of the acquisition of new insights into the effectiveness of specific 

measures (aimed at alleviating traffic congestion). For this illustration, 

one particular measure will be considered as an example. For this 

measure it is to be considered then whether (and if so, in what way) an 

assessment of its effectiveness according to the ‘new’ approach (i.e. 

based on the indicators defined in chapter 3, and taking into account all 

sources of variability discussed in chapter 2) would yield different 

conclusions than an assessment according to the ‘traditional’ approach 

(focusing on a kind of ‘representative’ situation). 

 

In order to achieve this, the following procedure is followed: 

Step 1: Assessment of the effectiveness of the measure according 

to the traditional approach. 

Step 2: Assessment of the effectiveness of the measure according 

to the new approach. 

Step 3: Comparison of the results of the two assessments. 

 

For steps 1 and 2 (i.e. the assessments of the effectiveness of the 

measure considered) we can choose between the same two types of 

methods as for the illustration of the new insights of type A (section 

4.2), namely analysis of empirical data or model-based analysis.  

 

                                                   
65 Note that this stochasticity embodies only a very limited part of all variabi lities identified in 

chapter 2. 
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In the first case, the effectiveness of the considered measure is assessed 

by comparing empirical data measured before the implementation of 

this measure with empirical data measured after the implementation. 

Also in the second case the effectiveness of the measure is assessed by 

comparing the traffic system’s performance for the situations with and 

without this measure. However, in this case these performances are not 

derived from empirical data. Instead, they are calculated using a model. 

 

For step 1 (i.e. the assessment according to the traditional approach, 

meaning that the effectiveness is assessed in terms of the improvement 

or deterioration of the ‘representative’ traffic conditions), the choice 

between these two types of methods is actually rather obvious. This is 

because of the fact that the ‘representative’ situation, as it is 

understood here, is in fact an artificial concept. It is the situation in 

which all influence factors are at their representative level (i.e. their 

median, average, or whatever else is considered representative). In 

other words, it is a situation without any influences of variability, 

except for the regular demand variation with the time of the day. This 

situation typically only occurs in a model environment, and not in 

reality (or only with an almost infinite small probability). In reality, 

demand and supply are, after all, always fluctuating, due to: 

- the variations in the driver and vehicle populations 

- the variations in the luminance conditions 

- the intrinsic randomness in people’s personal travel choices  

- the intrinsic randomness in human driving behavior 

Since the representative situation does not occur in reality, it obviously 

cannot be found in empirical data either. This makes the empirical 

evaluation method unsuitable for step 1. This means that only model-

based methods are appropriate for this step. 

 

Of course, this argument does not apply to step 2 (i.e. the assessment 

according to the new approach). Therefore, for this step we still have 

the choice between empirical data analysis and model-based analysis. 

Below, an overview is given of the pros and cons of these two types of 

methods. 

 

Pros and cons of using empirical data analysis: 

 Empirical data represent the ‘factual truth’ (apart from 
measurement errors and inaccuracies). 

- The assessment results can be distorted by trends, random 
fluctuations or other inhomogeneities in the various 
influencing factors (causing differences between the data 
measured before and the data measured after the 
implementation of the measure considered, which are not due 
to this measure itself). 

- The assessment will be time-consuming (due to the extensive 
data processing that will be required). 

- The difference between the results of the two effectiveness 
assessments might be distorted by the use of two different 
methods (i.e. model-based analysis for step 1, and empirical 
data-analysis for step 2). 
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Pros and cons of using model-based analysis: 

 The assessment results will not be distorted by trends, random 
fluctuations 66  or other inhomogeneities in the various 
influencing factors. 

 The difference between the results of the two effectiveness 
assessments cannot be distorted by the use of different 
methods. 

- Models are a (partially incomplete/erroneous) simplification of 
reality, with the result that the outcomes of these models to a 
greater or lesser extent will deviate from reality as well.  

- Developing a model in which the various sources of variability 
are appropriately accounted for (if no suitable existing model 
is found) will be a time-consuming task. 

- Models require inputs and parameter values, which might be 
difficult to obtain. 

 

It should be noted, however, that not too much importance should be 

attached to the last-mentioned drawback, for the same reason as given 

in section 4.2. 

 

All in all, it was considered the best option to use the same type of 

methodology for step 2 as for step 1, i.e. based on model 

computations. As far as the type of model is concerned, a macroscopic 

traffic simulation model was selected, for exactly the same reasons as 

given in section 4.2. Since there is a strong overlap between the 

requirements for the models needed to illustrate the new insights of 

types A and B, it was decided to select/develop one model satisfying 

both sets of requirements. In section 4.4 the combined set of 

requirements is given. Subsequently, in section 4.5 existing models 

specifically designed for addressing the variability in traffic conditions 

are considered. Here it is discussed to what extent these models meet 

the requirements specified in section 4.4. Since none of the models was 

found to be sufficiently adequate for the tasks at hand, a new model 

was developed. This model is discussed in chapter 5. 

 

4.4 Requirements for the quantification model 

In order to be able to satisfactorily perform the required analyses, 

several requirements have to be met by the quantification model. These 

are listed below. The requirements do not only relate to the way in 

which the traffic is modeled. Requirements relating to the model input 

and output are included as well. 

 

The model is required to:  

- be able to reproduce the dynamic processes of queue 
formation and dissipation, based on the evolution of traffic 
demand and capacity over time (see section 2.1);  

                                                   
66  By using the same random seeds for the ‘before’ and ‘after’ scenarios, distortions by 

randomness can be prevented. 
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- include the capacity drop phenomenon (section 2.1); 

- include the (equilibrium) relation between the density of 
traffic and the traffic speed (or, equivalently, between density 
and volume or speed and volume), as represented by the 
fundamental diagram (section 2.1); 

- include the blocking back effect of traffic congestion (section 
2.3.1); 

- include the ‘filtering’ and ‘releasing’ effects of traffic 
congestion (also referred to as the ‘temporal redistribution 
effect’, see section 2.3.2); 

- include the effect of (non-recurrent) traffic congestion on 
route choice (section 2.3.3), including the possibility that 
traffic diverts from the motorway network to the secondary 
network; 

- capture all sources of variations in the traffic demand (both 
within-day and day-to-day) discussed in section 2.2.4 (except 
for the ones that were identified as occurring too infrequently 
to be considered a source of daily variability in traffic 
congestion); 

- capture all sources of variations in the traffic supply (both 
within-day and day-to-day) discussed in section 2.2.5 (again 
except for the ones that cannot really be considered to 
contribute to the daily variability); 

- include the interdependencies between the various sources of 
variations (section 2.2.6); 

- include the possibility to calculate the ‘representative’ 
situation (section 4.3), by ‘switching off’ all sources of 
variability, except for the systematic within-day variability in 
traffic demands67; 

- include the possibility to separately ‘switch off’ each individual 
source of variability (section 4.2); 

- offer sufficient possibilities to enter the (possibly dynamic) 
effects of traffic measures, by modifying the model input or 
the characteristics/parameters of the model itself (section 4.3); 

- be able to perform a large number of simulation runs within a 
limited calculation time; 

- provide the performance indicators selected in section 3.4 as 
output, or alternatively provide all calculated traffic conditions 
as output (i.e. the speeds and traffic volumes for all road 
sections in the network, for all simulated time intervals), from 
which the indicators can be computed in a post-processing 
step; 

- use a time step that is small enough to: 

- prevent (within-day) variations in the traffic conditions 
from being smoothed out too much, and to 

- model the propagation of the traffic over the network 
in a sufficiently accurate (and stable) way.68 

                                                   
67 In practice it is quite common to perform a dynamic traffic simulation (taking into account 

the systematic within-day variation in traffic demands) for the ex-ante evaluation of a given 

measure. Therefore, in this thesis the systematic within-day variation in traffic demands is 

considered part of the ‘representative situation’.  

68 In practice, the latter of these two requirements will be decisive. 
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4.5 Existing quantification models 

Various existing quantification models (specifically designed for 

addressing the variability in traffic conditions) have been assessed on 

their suitability for use in this project. That is, it has been considered to 

which extent the requirements specified in the previous section are met 

by these models. 

 

Here the focus has been on models used by the Dutch road authority: 

- SMARA (Simulation Model for Analyzing the Reliability of Accessibility) 

- LMS-BT (National Model System - Reliability Tool) 

- Waiting time model for main roads (Traffic Quality / ESIM) 

- Traffic Quality – Network version 

 

However, also some models reported in (recent) international literature 

have been considered: 

- Queuing Model for determination variability recurrent congestion 

- KAPASIM 

- Travel time variability model of Mehran and Nakamura 

 

It should be noted here that models focusing on only one type of 

variability (like incidents) are not considered. 

 

In most models that are used in practice or proposed in literature, only 

one individual road section or bottleneck is considered. From the 

foregoing sections and chapters it is clear, however, that for the tasks 

at hand a whole network is to be considered, requiring a network 

model. In spite of this fact, the aforementioned models (relating to an 

individual segment) are included in this section as well. Not only for 

completeness, but also in view of the fact that it in principle can be 

considered to extend such a model to a network version, if the model – 

apart from being limited to an individual segment – is deemed very 

appropriate for the tasks at hand.  

 

Detailed descriptions of the models and their appropriateness in terms 

of fulfilling the requirements of section 4.4 are given in Appendix 1. 

Here only an overview of the positive and negative aspects of the 

different models is presented. This overview is shown by Table 4.1. 

 

From this table it can be concluded that all of the models turn out to 

have quite a number of major drawbacks. None of the models 

satisfactorily accounts for the route choice effect of traffic congestion. 

The other two network effects (i.e. blocking back and temporal 

redistribution) are adequately modeled by only one of the models. 

There is no single model that covers all relevant sources of variability. 

Furthermore, often important interdependencies are omitted. Another 

problem is that most models cannot provide the desired indicators. 

Only one of the models provides rough output data from which these 

indicators could be calculated in a post-processing step. 

 



 
 
 

 

 

 
 130 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

Overall, the model ‘Traffic Quality – Network version’ (using the 

dynamic macroscopic traffic simulation model ‘Flowsimulator’ as 

computational core) comes out best. Drawbacks of this model however 

are that route choice effects cannot be properly accounted for, and that 

fluctuations in the traffic demands cannot be addressed in an ideal 

manner. This latter is due to the fact that the traffic demands are 

specified on the link level (rather than on the origin-destination or 

route level), and propagated using aggregate split fractions. 

 

Consequently, none of the models was considered adequate for the 

tasks at hand. Therefore, in this project a new model was developed, 

specifically designed for these tasks. This newly developed 

quantification model is discussed in the next chapter. 

 

 
 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 4.1: Overview of the models’ 
scores regarding the requirements 
from section 4.5 
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5. The developed quantification model 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.1 Introduction – general concept 

In this chapter the developed quantification model is described. The 

model is based on the same general concept as most of the models 

discussed in the last section of the previous chapter. That is, a large 

number of traffic simulations are performed for varying model inputs, 

reflecting the various types of variability in traffic demand and supply 

characteristics (generated using the Monte Carlo technique). 

Subsequently, the desired performance indicators can be computed 

from the combined set of all simulation results. While this general 

concept might be the same as that of other models, its further 

elaboration is different, in order to overcome drawbacks of the models 

discussed in the section 4.5. 

 

Figure 5.1 schematically shows the main structure of the model. The 

model consists of seven components. The computational core of the 

model is a dynamic macroscopic traffic simulation model. For each 

simulation that is performed, this component simulates the traffic 

operations on the network, given the various traffic demand and supply 

characteristics. The other six components are built around it. These 

other components are: 

 

- A ‘central component’: 

This component manages all other components, and provides 

the options for model users to interact with the model. All kinds 

of control settings can be manipulated by the model user, 

which subsequently are translated in corresponding model 

actions. 

 

- A ‘representative demand calculator’: 

This component calculates a representative 24-hours demand 

pattern for all origin-destination relations in the network, using 

a static origin-destination matrix for the morning peak period as 

its only external input. 

 

- A ‘demand randomizer’: 

This module generates random realizations of the traffic 

demand pattern, based on a stochastic simulation of the various 

influencing factors involved. The representative 24-hours 

demand pattern calculated by the representative demand 

calculator is used as the base situation in the randomization 

procedure. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.1: Main structure of the 
developed model  
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- A ‘supply randomizer’: 

Comparable to the demand randomizer generating random 

realizations of the traffic demand pattern, the supply 

randomizer generates random realizations of the traffic supply 

characteristics, again based on the simulation of the various 

influencing factors involved. Here the deterministic supply 

values specified in the network model are assumed to represent 

the ‘representative’ base situation. 

 

- An ‘incident simulator’: 

Since the occurrence of incidents is strongly dependent on the 

actual traffic conditions, these incidents cannot be randomly 

generated in advance (i.e. before actually simulating the traffic 

operations on the network). Since the supply randomizer is 

programmed to compute the supply characteristics in advance 

for the whole 24-hours period (like the demand randomizer is 

programmed to generate the 24-hours traffic demand pattern 

in advance), this means that the generation of traffic incidents 

(which mainly affect the traffic operations by their effects on 

the supply characteristics) cannot be included in the supply 

randomizer, but are to be modeled separately. This is the task 

of the incident simulator. 

 

-  A ‘data processor’: 

This component collects the outputs of all traffic simulation 

model runs, and subsequently processes these into the desired 

performance indicators. 

 

While the computational core of the model (i.e. the dynamic traffic 

simulation model) is implemented in the JAVA programming language, 

the other parts of the model are all implemented in the mathematical 

programming language MATLAB. In the course of the model 

development some routines of these other parts were moved to the 

JAVA code of the dynamic traffic simulation model, however, in order 

to (significantly) improve the computation speed. 

 

The horizontal arrows in Figure 5.1 show the most important data flows 

between the different model components. Please note that the real 

model involves more data flows, which have been omitted from the 

figure for the sake of readability. One of these other data flows for 

example concerns the representative traffic demand pattern over the 

day, which is transferred from the representative demand calculator to 

the demand randomizer, which uses it as starting point for the 

randomization. 

  

In the following sections, the most important aspects of the model will 

be discussed in more detail. These successively are: 

- the traffic flow modeling (section 5.2), 

- the general approach to the modeling of the variations in traffic 

demand and supply (section 5.3), and 

- the modeling of the various individual variation factors (section 

5.4). 
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In terms of the different model components described above, the first 

aspect is dealt with in the computational core of the model, while the 

other two aspects are managed in the demand and supply randomizer, 

the incident simulator and the representative demand calculator.  

 

The next chapter (Ch. 6) discusses some modeling issues requiring 

further consideration, which have come to light during the 

development of the model. Since these generally are issues which 

require substantial further research, it was not possible to actually solve 

them within this master thesis research project. However, chapter 6 

does discuss some possible strategies for this. Also a possible solution 

strategy for reducing the required number of simulations is proposed 

here. At this moment, at least a few thousand simulations are necessary 

to obtain results with a sufficient level of statistical accuracy. Given the 

simulation time of about 1.5 to 2 minutes per simulation, one 

simulation series would take multiple days, if not multiple weeks. 

 

The validity of the developed model is discussed in chapter 7. 

 

5.2 Traffic flow modeling 

As was already mentioned in the previous section, the simulation of the 

traffic propagation over the network (i.e. the computation of the 

resulting traffic conditions for given traffic demand and supply 

characteristics, generated by other model components) is taken care of 

by the computational core of the model. For this use is made of an 

existing dynamic macroscopic traffic simulation model. Subsection 5.2.1 

discusses the choice of this model. Subsequently subsection 5.2.2 

describes which adaptations were made to the model. Finally in 

subsection 5.2.3 it is discussed how this model was used to model the 

traffic flow over the network, considering aspects like the (spatial and 

temporal) discretization, the fundamental diagram and the (absence of) 

route choice modeling. 

5.2.1 Model selection 

A large number of dynamic macroscopic traffic simulation models have 

been considered for the modeling of the traffic operations. These 

models are listed below: 

- Flowsimulator, 

- Indy (link transmission version), 

- METANET, 

- MaDAM, 

- MARPLE, 

- Fastlane, 

- The EVAQ Hybrid Route Choice Model, 

- DSMART, and 

- JDSMART. 
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These models have been mutually compared on the following aspects: 

- Ability to reproduce the processes of growth and dissipation of 

traffic jams (including blocking back effects) in a realistic way, 

at least consistent with first order traffic flow theory. 

- The modeling of the capacity drop phenomenon. 

- The way of modeling the split fractions at the network nodes. 

(For a consistent modeling of the traffic flows over the network 

fixed split fractions are not appropriate, because in reality they 

may be affected by the traffic conditions in upstream parts of 

the network.) 

- The ability to simulate the effect that traffic might deviate from 

its standard routes in case of (seriously) non-recurrent traffic 

conditions. 

- The possibility to perform an (once-only) equilibrium 

assignment (in order to obtain a basic demand pattern, which 

subsequently would be varied according to the various sources 

of variation). 

- The possibility to introduce the variations in the traffic demands 

in the model in a consistent way. 

- The possibility to introduce the variations in the traffic supply 

characteristics in the model in a consistent way. 

- The possibilities for modeling time dependent supply effects of 

measures. 

- The possibilities for modeling time dependent demand effects 

of measures. 

- The calculation time. 

- The model complexity (taking into account the fact that while a 

higher complexity might allow for a potentially more realistic 

traffic modeling, it usually also results in a larger amount of 

potential sources of error, and might adversely affect the 

interpretability of the results). 

- The flexibility of the model (i.e. the possibility to adapt the 

model to the tasks at hand, which for example might be needed 

if one or more of the other criteria are not met). 

- The generation of the desired output indicators (or rough 

output data, from which the desired output indicators can be 

computed). 

- The interfaces with the other components of the developed 

model: in view of the large required number of simulations it 

should be (made) possible to make MATLAB invoke the traffic 

simulation model in an automated way. 

- The ease of use of the simulation model 

- The availability of the model. 

- The availability of a readily usable test network, including a 

nominal demand pattern. 

 

The assessment revealed that there is no single model that meets all the 

requirements. Therefore, inevitably some concessions had to be made. 

 



 
 
 

 

 

 
 136 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

There is only one model that can deal with the route choice effect of 

traffic congestion (i.e. the effect that traffic might deviate from its 

standard routes in case of (seriously) non-recurrent traffic conditions) in 

a sound way, namely the EVAQ Hybrid Route Choice Model (Pel et al, 

2009). This is the only model that combines the process of pre-trip 

route choice (in which travelers base their route choices on their past 

experiences, which results in the phenomenon that the traffic 

conditions have the tendency to approximate an equilibrium69) with the 

process of en-route route choice (in which travelers base their route 

choices on the current traffic conditions). All other models account for 

only one of these two route choice processes (mostly pre-trip route 

choice), or do not model route choice at all. In the Hybrid Route Choice 

Model travelers in principle follow their ‘equilibrium routes’ (based on 

their past experiences), but will deviate from these if the traffic 

conditions differ significantly from the traffic conditions in the 

‘equilibrium’ situation.  

 

This clearly is a strong argument for the use of the EVAQ Hybrid Route 

Choice Model as computational core of the developed model. 

However, two clear drawbacks of this simulation model were identified, 

which make it less appropriate for the tasks at hand: 

- Instead of using a physical queuing model (such as in cell or link 

transmission models), the model uses a simplified queuing 

model in which each link is artificially split up in a free flowing 

part and a queuing part. The head of this queuing part is fixed 

at the end of the link, and a constant queue density is assumed, 

which are clearly unrealistic simplifications. Consequently, the 

modeling of blocking back effects is not very accurate. This can 

be illustrated with Figure 5.2, which shows both the evolution 

of a queue as computed with the simplified queuing model, and 

the evolution of the same queue as computed with a physical 

queuing model.  

- The model requires more computation time than other models, 

due to the fact that the individual traffic flows following a 

certain route need to be tracked (which is not done in en-route 

route choice models and part of the pre-trip route choice 

models), and route choice sets need to be generated during the 

traffic simulation (which is not done in pre-trip route choice 

models). Since the computation time of the selected model is 

critical for the success of the proposed approach, this was an 

important aspect to be taken into account. 

 

Because of these two drawbacks, the possibility to use the EVAQ 

Hybrid Route Choice Model was rejected. Since this is the only model 

that can realistically deal with the route choice effects of traffic 

congestion (i.e. combining pre-trip and en-route route choice 

behavior), this means that this desired model property was sacrificed in 

favor of other desired model properties. 

                                                   
69 That is, a situation in which none of the travelers can improve his or her (perceived) travel 

costs by unilaterally switching routes. 
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Based on the mutual comparison of all pros and cons of the different 

traffic simulation models, finally the choice was made to use the model 

JDSMART (Zuurbier, 2010). This is a first order cell transmission model 

implemented in JAVA, using the Godunov numerical solution scheme. 

 

The choice for this particular model was mainly motivated by the 

following facts: 

- Due to its nature (i.e. being a cell transmission model), the 

model can very adequately reproduce the processes of queue 

build-up and dissipation (including blocking back effects). It has 

to be noted, however, that the numerical diffusion associated 

with this type of models is a point of attention. 

- The model uses destination-specific split fractions at the 

network nodes. Consequently, the aggregated split fractions 

(i.e. aggregated over the different destinations) are not fixed 

(as in many other models), but are dependent on the traffic 

conditions in upstream parts of the network, which is more 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.2: Evolution of one and the 
same queue according to the 
simplified queuing model and 
according to the link transmission 
model (a physical queuing model)  
(Adapted from: Snelder and Schrijver, 
2008) 
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realistic 70 . Furthermore, this destination-specific nature of the 

split fractions allows one to introduce certain (origin-destination 

specific) demand variations in the model in a more consistent 

way71. Finally, the fact that the model uses destination-specific 

splits fractions leaves the door open to add some functionality 

regarding the modeling of the route choice effect of traffic 

congestion in any possible continuation studies. 

- The model was readily available at Delft University of 

Technology, including a suitable test network with a nominal 

demand belonging to it (albeit being a static demand matrix for 

the morning peak only). 

- The model could easily be operated from MATLAB, using some 

readily available MATLAB-scripts to invoke the model and load 

the test network. 

- Due to its implementation in JAVA and operation from 

MATLAB, the simulation model also is reasonably flexible, in 

the sense that it can be adapted to the specific tasks at hand 

(mainly referring to the inclusion of facilities that enable the 

model to handle the provided input and deliver the desired 

output; see also the next subsection). 

 

It should be noted that the first two aspects of course come at the cost 

of a larger computational complexity, which will result in the 

computation time of the model to be longer than that of some other 

types of dynamic macroscopic traffic simulation models. First of all a 

cell transmission model is quite computationally intensive by its nature, 

since every link (except for very short links) is divided in multiple cells, 

for each of which every time step the traffic conditions have to be 

recalculated. Secondly, the destination-specific modeling of the traffic 

propagation over the network consumes additional computation time, 

since it requires that the destinations of the vehicles are tracked during 

this propagation. 

 

As far as this second point is concerned, it should be mentioned 

however that JDSMART performs this ‘multi-class’ aspect of the traffic 

flow modeling in a more efficient way than other multi-class models. 

Instead of propagating every single user class (heading for one specific 

destination) individually over the network, it just propagations only the 

aggregated traffic flow over the network, while separately propagating 

changes in the traffic composition (with respect to the destinations the 

traffic is heading for) by means of floating particles that carry 

information on these composition changes (Zuurbier, 2010). 

                                                   
70 After all, the composition (by destination) of the traffic arriving at a network node can be 

affected by variations in the amount of traffic congestion in upstream parts of the network. 

Without having an effect on the destination-specific split fractions, this may introduce 

variations in the aggregated split fractions. 

71 In a model using aggregated split fractions this is not possible (without recalculating these 

fractions), since an addition to the demand level of a certain origin would be divided over all 

destinations by these aggregated split fractions. 
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5.2.2 Adaptations to the model 

In order to make JDSMART suitable for its role as computational core of 

the model, some modifications were implemented, namely: 

1) Transition from a link-based fundamental diagram to a cell-

based fundamental diagram (as far as its parameters are 

concerned). 

2) Addition of some functionality to update fundamental diagram 

parameters (representing the traffic supply characteristics of the 

cells) during the traffic simulation via an efficient MATLAB 

routine. 

3) Implementation of the possibility to model the capacity drop in 

a certain way (which will be explained at a later stage). 

4) Addition of a routine that keeps track of the amount of vehicle-

kilometers traveled per cell (which forms the input required by 

the incident simulator component). 

5) Addition of a routine that logs the amount of vehicle-hours lost 

due to the occurrence of traffic congestion (which is one of the 

desired output indicators), with respect to a certain reference 

speed. 

6) Addition of a routine that keeps track of the traffic dynamics on 

a user-specified cell/link, in order to be able to visualize these 

dynamics after finishing the simulation.  

 

Most of these modifications speak for themselves, and consequently do 

not need further explanation. Only modifications 1 and 3 might need 

some clarification. For modification 3 this explanation is given in the 

following subsection, discussing the traffic modeling. Therefore, here 

only modification 1 is explained in more detail. 

 

Initially, in JDSMART all fundamental diagram parameters (representing 

the various traffic supply characteristics) were defined at the link-level. 

This means that all these traffic supply characteristics are assumed to be 

homogeneous over the length of the link (i.e. constant over all cells in 

which this link is partitioned). While this more or less will be true for 

the time-averaged values of these supply characteristics, it will not 

generally be true at individual moments in time. 

 

This follows from the work of Brilon et al (2005), who show that free 

flow capacity distributions cannot only be derived for clearly 

distinguishable bottlenecks (which in the model typically are 

represented by the network nodes, where links with different supply 

characteristics are connected with each other), but also for uniform 

road sections, without a distinct bottleneck (corresponding to individual 

segments of the (longer) links in the model). 

  

Furthermore it should be considered that insofar incidents are 

concerned, the traffic supply conditions are affected only locally. In 

accordance with this, the parameters of the fundamental diagram 

should be adapted to these incidents only over a limited length, and 

not over the whole length of (long) links. Also note that incidents can 
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occur everywhere along the length of the link72.  It might be relevant to 

properly account for this aspect in the model, by modeling incidents 

not at the level of links as a whole, but at the level of individual cells. 

The location along a link of an incident after all could be important for 

the amount of spill-back of the incident-related congestion to upstream 

links. 

 

For these reasons, it was considered desirable to be able to vary the 

traffic supply characteristics on the level of individual cells, rather than 

on the level of links as a whole. Therefore the model was adapted to 

facilitate this, by changing the link-based definition of the fundamental 

diagram parameters into a cell-based definition.     

5.2.3 Traffic modeling 

This subsection discusses the way in which JDSMART was employed to 

model the traffic propagation over the network. Aspects that will be 

considered are the (spatial and temporal) discretization, the 

fundamental diagram, the capacity drop, route choice, the warming-up 

time and the cooling-down time. 

 

Discretization 

For the simulation of the traffic propagation a suitable temporal and 

spatial discretization should be chosen (i.e. time step and cell size, 

respectively). That is, the time step and cell size should be such small 

that the level of accuracy of the traffic flow modeling is sufficient for 

the final results to make sense. On the other hand, one should be well 

aware of the fact that if one reduces both the time step and the cell 

size with a factor x, this will increase the computation time by a factor 

of approximately x2. 

 

In this field of tension a time step of 5 seconds was chosen. For the cell 

size the corresponding minimum value was used, calculated by 

multiplying this time step by the (link dependent) speed limit. This 

relation between time step and minimal cell size follows from the 

Courant Friedrichs Lewy condition, which entails that within one time 

step ‘information’ in the traffic flow might not cover more than one cell 

length, in order for the numerical solution scheme to converge to the 

original continuous equations. From a small test with DSMART (the 

MATLAB-version of JDSMART) it was concluded that a (significantly) 

larger time step results in clearly different traffic flow patterns. For a 

smaller time step it seemed that the traffic flow patterns do not change 

importantly anymore. 

 

It has to be noted that for a time step of 5 seconds the numerical 

diffusion seems not negligible yet. This means that a smaller time step 

in fact would be preferable. A time step smaller than 5 seconds was 

computationally not feasible however. 

 

                                                   
72  Of course in reality accidents occur relatively frequently at locations with geometrical 

discontinuities, and thus near link ends, but vehicle break downs (which together form the 

largest subset of incidents) of course will be distributed more evenly over space.   
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Fundamental diagram and capacity drop 

For the modeling of the traffic flow on the motorways the well-known 

fundamental diagram of Smulders was selected (one of the default 

fundamental diagrams available in JDSMART). In this fundamental 

diagram (depicted in Figure 5.3) the speed decreases linearly with the 

density from the free speed at a zero density to the critical speed at the 

critical density (for which the traffic flow attains its maximum value). In 

the congested branch of the fundamental diagram the speed decreases 

hyperbolically with the density from the critical speed at the critical 

density to a zero speed at the jam density, corresponding to a linear 

decrease of the traffic flow. 

 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.3: Fundamental diagram of 
Smulders (upper part: speed versus 
density; lower part: flow versus 
density) 
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This fundamental diagram however does not include a capacity drop 

(i.e. a drop in the capacity which is observed after the onset of 

congestion), a phenomenon which was discussed in chapter 2. Since it 

was considered to be of potential importance for the final results, it was 

decided to add the capacity drop phenomenon to the traffic flow 

modeling. This potential importance can be explained in the following 

way. The capacity drop results in the phenomenon that a traffic jam 

once it is created has the tendency to enhance itself, meaning that this 

traffic jam will remain existent for a longer period of time (and reach a 

longer length) than without this drop in capacity. Since taking into 

account all sources of variation is hypothesized to result in more traffic 

congestion occurring in the simulation outputs (considered at an overall 

level), the capacity drop might play a more important role when all 

sources of variation are taken into account. This way, the capacity drop 

could affect the differences between the results obtained from a 

‘traditional’ evaluation (looking at a representative situation only) and 

those obtained from an evaluation in which all sources of variability are 

taken into account, and consequentially affect the additional insights 

that the latter approach could provide us with. 

 

Modeling the capacity drop in a first order traffic flow model is not a 

straightforward thing however. If the capacity drop is simply added to 

the fundamental diagram as shown in Figure 2.1 and Figure 2.2, the 

physical model would enable shock waves traveling upstream with an 

unrealistically high or even infinite speed, causing the capacity to drop 

everywhere on its way. In the discretized model this upstream speed of 

course would be maximized at one cell length per time step 

(corresponding to the free speed). This however is still much too fast, 

since the real maximum speed with which traffic congestion spills back 

is about 20 km/h. 

 

Two possible explanations can be suggested for the fact that this 

phenomenon (i.e. very high shock wave speeds induced by the capacity 

drop) is not observed in reality: 

 

- After the occurrence of a traffic breakdown the speed on a 

completely saturated road in reality is not instantaneously 

lowered, as predicted by the fundamental diagram with a 

capacity drop. Instead, drivers will gradually decelerate, 

resulting in decreasing headways (and thus in an increasing 

traffic density). Accordingly, the traffic congestion will spill back 

at a much lower speed. This second order phenomenon is not 

taken into account in a first order traffic flow model. 

 

- In reality the capacity drop might be dependent on the traffic 

state within the queue. It seems intuitively right to assume that 

the worse the traffic conditions in the traffic jam are 

(corresponding to a higher density and lower speed), the larger 

the capacity drop will be. Imagine for example the situation in 

which vehicles that flow out of the queue have to accelerate 

from a standstill. In this case probably much larger headway 

gaps between the outflowing vehicles will occur than in a 



 
 
 

 

 

 
 143 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

situation in which the vehicles flow out from a queue in which 

the traffic is still reasonably flowing, with a speed of for 

example 60 km/h. If the capacity drop indeed is significant only 

in situations with outflow from queues in which the density is 

far above the critical density, it will not result in the emergence 

of shock waves with very high speeds. Again this (possible) 

effect is not taken into account in a first order traffic flow 

model. 

 
A known solution (see Appendix A1.5) to prevent the emergence of 

unrealistically fast shock waves in a traffic model with capacity drop is 

to define this drop as a function of the state of the congested traffic, in 

line with the second explanation above. This approach was also 

selected in this case. For the maximal capacity drop (corresponding to 

outflow from standstill) a value of 20% was assumed. Looking at 

empirical values that are found for the capacity drop, this seems a 

reasonable though slightly conservative value. Figure 5.4 shows the 

corresponding change in the cell demand function of the Godunov 

discretization scheme. Please note that due to this modification the 

model cannot longer be considered a discretization of the continuous 

LWR (Lighthill-Witham-Richards) model anymore. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.4: Modification in the cell 
demand function of the Godunov 
discretization scheme, implemented 
to account for the capacity drop 
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Route choice 

As mentioned before, the desired model property of realistically dealing 

with the route choice effects of traffic congestion (which would only be 

possible by using the EVAQ Hybrid Route Choice Model) was sacrificed 

in favor of other desired model properties. 

 

If pre-trip route choice and en-route route choice cannot be combined 

(for which the EVAQ Hybrid Route Choice Model would be needed), 

two possibilities for modeling the route choice process logically remain, 

namely assuming pre-trip route choice, or assuming en-route route 

choice. Although the first option is not realistic, the second option 

clearly is even more unrealistic. Modeling route choice in that way 

would correspond to the assumption that road users base their route 

choice decisions entirely on the instantaneous traffic conditions (or 

those of a short time interval ago, depending on the exact modeling 

choices), without considering their past travel experiences. In view of 

the fact that research shows that a serious disruption is needed to make 

a substantial part of the road users decide to deviate from their 

‘standard’ routes (see section 2.3.3), this assumption clearly is not 

realistic. Probably, for many situations it is still more realistic then to 

assume that drivers do not deviate from their ‘standard’ routes at all. 

 

Based on the above, it was decided to assume pre-trip route choice. (In 

fact there was not really an alternative either, since as opposed to its 

MATLAB-version DSMART, JDSMART does not possess an en-route 

route choice component). The next issue then of course is how this pre-

trip route choice pattern should be calculated. Basically, there are two 

options for this: calculating a dynamic equilibrium route choice (for 

which in JDSMART an equilibrium assignment component is available), 

or simply performing a shortest path calculation on the free flow travel 

times. In the latter case the route choice is assumed constant over the 

day. Please note that if an equilibrium assignment would be taken as 

point of departure, such an equilibrium calculation of course would be 

calculated only once, namely for the representative situation. The 

resulting route choice pattern would then be applied in every other 

simulation run (with randomized traffic demand and supply 

characteristics). After all, it would not make any sense at all to 

recalculate this equilibrium for every individual randomized simulation, 

since this equilibrium is a long-term notion. It should be noted here that 

long-term road works will not be included in the simulations, for 

reasons explained in section 5.4.13. Clearly, for this type of road works 

the equilibrium would have to be recalculated. 

 

Although the route choice pattern resulting from a dynamic traffic 

equilibrium calculation could theoretically result in a significant more 

realistic network loading, it yet was decided to assume the route choice 

pattern resulting from a shortest path calculation on the free flow travel 

times. The associated reduction in realism of the network loading was 

not considered of vital importance for the research tasks at hand. 

 

There are two reasons for not calculating a dynamic traffic equilibrium. 

First of all, an important difficulty with respect to this calculation would 
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have been that the JDSMART equilibrium assignment component did 

not provide the facilities to deal with a traffic demand pattern in which 

the various origin-destination demands vary independently from one 

another (which actually is the case in the generated dynamic origin-

destination matrix). Only for demand patterns in which the various 

origin-destination demands vary according to one and the same 

temporal pattern, a dynamic equilibrium could be calculated in a 

straightforward way. 

 

The second reason is that in JDSMART, dynamic changes in the route 

choices (derived from the equilibrium calculation) are not only applied 

on newly departing traffic, but also on all vehicles that are already 

present in the network. This is related to the fact that in JDSMART 

vehicles are not tracked according to their routes, but only according to 

their destination. As a result of this latter, changes in route choice have 

to be applied via the (destination-specific) split fractions in the network 

nodes. 

 

This principle of applying dynamic changes in route choice on all traffic 

that is already present in the network is considered very undesirable 

within the context of this project. To illustrate this, consider two 

randomized simulation runs, one in which hardly any traffic congestion 

occurs, and another in which traffic conditions get heavily congested. 

Assume that in both cases at a certain moment in time the route 

choices are updated, on the basis of the (same) pre-calculated dynamic 

equilibrium. Although in both cases the change in route choice is 

updated at the same moment in time, in the second simulation most 

vehicles will have made much less progress on their journey than in the 

first simulation run, due to the traffic congestion. This means that their 

route choices are altered at a different stage of their trip, meaning that 

the routes that are traveled in the second simulation run in the end are 

different from those in the first simulation run. This means that the 

model would automatically generate a certain variation in route choice, 

which does not have any theoretical basis at all. This of course would 

be highly undesirable (i.e. much more undesirable than the reduction in 

realism of the network loading that is associated with simply assuming 

the free flow route choice pattern). 

 

Warming-up period 

At the start of the simulation the traffic network is still empty. It will 

then take some time before all network parts are loaded in a way which 

is more or less in ‘equilibrium’ with the imposed traffic demand and 

supply characteristics. As a result, the first part of the traffic simulation 

will yield erroneous results (in terms of the calculated traffic 

conditions). Therefore a warming-up period is added to the simulated 

period. That is, before the actual start of the period that is to be 

simulated, the traffic simulation model is already run for a certain pre-

specified amount of time, with traffic demand and supply values equal 

to those for the first time interval of the actual simulation period.  
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Since the default simulated period in the model is the whole 24-hours 

period of a day, a relatively short warming-up period is sufficient 

(because of the low traffic volumes at midnight). Considering that the 

amount of time required for reaching the other end of the network is 

about 15 to 20 minutes (in free flow conditions), a default warming-up 

period of half an hour was chosen. 

 

Cooling-down period 

For the computation of travel times JDSMART uses floating particles, 

which are propagated along with the flow. At the start of each 5-

minute time interval the model releases new instances of such particles 

at the start of the different routes for which the travel time distributions 

are to be evaluated. Of course it should be taken into account then 

that at the end of the simulated period not yet all of these particles 

reached the end of their routes. Consequently, the travel times for the 

last intervals of the simulated period are not known yet either. 

Therefore the traffic simulation run is extended until the last travel time 

particle finishes. During the whole of this ‘cooling-down period’, the 

demand and supply values of the last 5-minute interval of the day are 

used. 

 

5.3 General approach to the modeling of the variations in 

traffic demand and supply 

This section describes the general methodology that is used in the 

modeling of the variations in the traffic demand and supply. The 

specific aspects in the modeling of the different individual sources of 

variability are discussed in the next section. The current section starts 

with a discussion on the most basic principles of the modeling of the 

variations, which are applicable to both the demand and supply 

characteristics. After that, it is explained how variations in the traffic 

demand are modeled. The last subsection explains how this is done for 

the traffic supply characteristics. 

5.3.1 General concept 

 

Performance of a large number of randomized simulation runs 

As was already explained before, the model deals with the variability in 

traffic demand and supply by performing a large number of randomized 

traffic simulation runs. For each of these simulation runs, the demand 

and supply randomization components generate tables with the traffic 

demand and supply values (per 5-minute interval) that are to be used in 

that specific run. In these tables the various sources of variability 

discussed in chapter 2 are reflected. Here the within-day variability is 

reflected within a table for a specific run, while the day-to-day 

variability is reflected in the differences between the tables for different 

runs. 
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Random generation of demand and supply tables 

The demand and supply tables are generated using the Monte Carlo 

technique and the information on effects and probabilities/patterns of 

occurrence provided in chapter 2. Important interdependencies 

between the different sources of variability are taken into account by 

using conditional probability specifications. An important limitation of 

the information from chapter 2 is that it is not always specific enough 

for use in the demand and supply randomizers. Since the required 

information has not been found in literature, in fact empirical research 

into a number of aspects would be needed. Because of the fact that this  

however was not feasible within the scope of this project,  assumptions 

had to be made on these aspects.  

 

It is important to note here that the (supply) effects of any possible 

incidents are not yet reflected in the tables generated by the supply 

randomization component. This is because of the fact that the 

occurrence of incidents is strongly dependent on the prevailing traffic 

conditions. Therefore, random realizations of incidents are not 

generated in advance of the actual traffic flow simulation (like all other 

demand and supply influencing factors), but concurrently with this 

simulation. For every generated incident, the supply tables are adjusted 

accordingly in real-time. 

 

Figure 5.5 schematically explains the working of the demand and 

supply randomization components of the model. They operate in two 

steps. First, random realizations of the different influencing factors (also 

indicated as ‘sources of variability’) are generated. For this, data on the 

probabilities/frequencies of occurrence of the different possible 

conditions are used. These data are specified in the form of discrete or 

continuous probability distributions. In order to account for the fact 

that some influence factors are dependent on other ones, part of these 

probability distributions is specified conditionally. Note that this means 

that some of the sources of variability have to be dealt with before 

others in the randomization procedure, since the randomly generated 

statuses of the formers are needed as input for the randomization of 

the latters. 
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When the random realizations of the influencing factors have been 

generated, these are translated in effects on the traffic demands and/or 

traffic supply characteristics, using tables in which these effects are 

specified in terms of correction factors with respect to the 

representative values. By applying the correction factors on the 

representative values of the demand and supply characteristics, the 

stochastic realizations of these demand and supply characteristics are 

found. These realizations are stored in tables, which are passed on to 

the computational core of the model. The latter subsequently will 

simulate the traffic conditions that would arise from these demand and 

supply characteristics. 

 

With respect to the correction factors mentioned above, it should be 

noted that it is assumed in the model that multiple correction factors 

(expressing the effects of different sources of variability) can be applied 

simultaneously on the representative demand and capacity values 

without any further corrections for any possible interaction effects.  This 

corresponds to the assumption that the effects of different sources of 

variability are independent of one another. In reality this is not the 

case. Some effects might strengthen or weaken each other, or partly 

overlap with one another. These interaction effects however are often 

too difficult to estimate to be taken into account in the model. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.5: Schematic explanation of 
the working of the demand and 
supply randomization components 
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Replication of the stochastic realizations 

An important desirable property of any stochastic model is that its 

stochastic realizations are reproducible. This entails that if one performs 

the same simulation run again, exactly the same stochastics realizations 

are generated, and consequently exactly the same output is obtained.  

This model property is especially important in comparative evaluations. 

After all, in such situations one typically does not want the difference 

between the results of two model runs to be distorted by the use of 

different pseudo-random number values. 

 

Obviously, the requirement that the stochastic realizations can be 

replicated applies equally well to the model at hand. Therefore, the 

model was programmed to reset the random number generator to its 

initial state each time a new model run is started. This ensures that all 

model runs are based on the same pseudo-random number stream. 

 

This however is not sufficient to obtain equal stochastic realizations in 

different model runs. For this it is not only required that the same 

pseudo-random number stream is generated, but also that these 

pseudo-random numbers are employed at exactly the same locations 

within the model. 

 

This additional requirement can be illustrated as follows. Imagine that 

we want to asses the relative contribution of weather influences to a 

certain congestion indicator. This can be done by comparing the results 

of two different model runs: one in which weather influences are 

switched on, and one in which these are switched off. In the latter case 

no stochastic realizations of the weather conditions would be taken 

anymore, which would decrease the amount of pseudo-random 

numbers used per simulation. The consequence of this latter would be 

that in the second model run every pseudo-random number is used at a 

different location than in the first run. As a result, completely different 

stochastic realizations would be generated, in spite of the fact that the 

random number stream itself is exactly the same. Obviously, this is 

highly undesirable. 

 

It is stressed that the occurrence of this problem is not limited to 

situations in which a certain influence factors is switched on or off, as 

the above example might suggest. The amount of pseudo-random 

numbers used per simulation may also vary under influence of the fact 

that some ‘supplementary’ stochatisic realizations are only needed if 

certain other realizations turn out in a certain way. An example of such 

a ‘supplementary’ stochastic realization is the random generation of an 

incident duration, which obviously is only needed when an incident is 

generated. 

 

This problem can only be prevented by ensuring that all elements of the 

model employ a constant amount of pseudo-random numbers, no 

matter what the model settings and outcomes of other stochastic 

realizations are. This has been achieved by implementing the following 

modeling principles: 
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- Switching off a source of variation does not affect the 

generation of stochastic realizations for this source. Instead, it 

just prevents these stochastic realizations to have effects on 

demand and supply, by blocking their correction factors.  

- In all cases where  pseudo-random numbers might be needed 

for the generation of ‘supplementary’ stochastic realizations, 

these are just always generated, regardless of whether they 

actually will be used or not. 

 

For the modeling of incidents the latter for example means that a 

pseudo-random number for the stochastic realization of the incident 

duration is generated for each and every potential incident, irrespective 

of whether this incident indeed is generated or not. Since there is a 

potential incident for every possible combination of network cell and 

time interval, this means that actually a very large amount of pseudo-

random numbers have to generated, most of which finally are not even 

used. From this it may be concluded that this solution comes at the 

expense of a sharp deterioration in the computational efficiency of the 

model. Relatively speaking, however, the increase in computation time  

is only very limited. 

5.3.2 Variability in the traffic demands 

 

Demand variables 

The output of the demand randomizer consists of a dynamic origin-

destination matrix. This three-dimensional table contains the origin-

destination traffic demands per five-minute interval. The destination-

specific split fractions at the network nodes (corresponding to the route 

choices) are not varied, but are assumed fixed. This is not entirely 

correct, but too little information is available to vary these split 

fractions in a sound way. It is difficult to assess to which extent this 

simplification is reasonable. On the one hand, the strong habitual 

component in route choice behavior suggests that the variability in 

these split fractions will not be very large. On the other hand, the 

variation in the population of road users may obviously bring a certain 

degree of variability with it. However, in the test network that was 

considered within this project (see chapter 8) all motorway trips have 

only a very limited number of route alternatives. Many of these trips 

even have only one realistic route possibility. This means that the 

variability in route choices can safely be neglected, without significantly 

harming the final model outcomes. 

 

Note that in spite of the fact that the destination specific split fractions 

are assumed fixed (per time interval), the aggregated split fractions are 

not fixed in the traffic simulation, since the composition of the traffic 

(by destination) may vary under the influence of variations in the levels 

of origin-destination traffic demands, as well as under the influence of 

traffic congestion in upstream parts of the network. 
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Method of implementing the sources of variation 

As apparent from chapter 2, most of the sources of variation in traffic 

demands have clearly different impacts on the traffic demands during 

peak periods and those during off-peak periods. This means that 

multiplication of the whole 24-hours demand pattern with one uniform 

scaling factor would not be an appropriated method to deal with these 

demand variations. Instead a method is required in which a distinction 

can be made between these different parts of the day. 

 

However, simply applying different correction factors for different parts 

of the day (without taking care of gradual transitions) would not be an 

appropriated method either. Such an approach would lead to abrupt 

jumps in the traffic volumes on the network, resulting in unrealistic 

traffic conditions (such as the emergence of congestion at 

predetermined times of the day). Therefore, a method is desired that 

computes demand pattern realizations in which the peak and off-peak 

gradually run over into one another. 

 

To meet the above requirements, a method was devised in which the 

24-hours demand pattern of an origin-destination relation is considered 

to be composed of three basic components73: 

- a base component, which describes the traffic demand pattern 

as if there were no peak periods; 

- a morning peak component, which – as its name implies – adds 

a morning peak to the traffic demand pattern; and 

- an evening peak component, which – as its name implies – adds 

an evening peak to the demand pattern. 

 

This principle is illustrated in Figure 5.6. 
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73  Inspired by the so-called ‘T-values Model’ (also known as the ‘Tones Methodology’), 

described in (AVV, 1997) and (Transpute, 2003), 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.6: Traffic demand pattern for 
an origin-destination relation 
considered to be composed of three 
basic components 
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For each origin-destination relation a realization of the traffic demand 

pattern is now calculated in the following three steps: 

 

- First, stochastic realizations are generated for the following 

three aggregated demand values:: 

- the total morning peak traffic demand (7-9h) 

- the total evening peak traffic demand (16-18h) 

- the total off-peak traffic demand 

This stochastic generation proceeds according to the procedure 

that has been described in the previous section. 

 

- Next, the combination of the three basic demand pattern 

components (depicted in Figure 5.6) is fitted to these three 

aggregated demand values, using linear algebra. An example of 

this is shown in Figure 5.7. This fitting procedure results in a 

weight for each of these three basic components. 

It should be noted here that a negative weight is not accepted. 

If such a situation occurs, this is dealt with by performing a 

different fitting procedure, in which the component concerned 

is set at zero. The obvious consequence of this is that it 

becomes impossible to satisfy all three demand constraints. This 

means that one of these constraints has to be abandoned. For 

this the constraint on the off-peak demand is chosen, in view of 

the fact that most of the traffic congestion occurs during the 

peak periods. By carefully tuning the representative demand 

patterns (in such a way that all weights have a reasonable 

buffer for corrections) it was more or less guaranteed however 

that any possible deviations from the desired off-peak 

corrections will be only marginal. 

 

- Finally the realization of the demand pattern is obtained by 

multiplying the three basic components with their calculated 

weights, and superimposing them. 

 

Obviously not all influence factors can be modeled in this way. This is 

the case for events (which typically are associated with an arrival and a 

departure peak, which obviously do not coincide with the global peaks 

in traffic demand) and weekend days and (part of the) public holidays 

(which do not have peak periods). The way of modeling of these 

effects will be discussed in section 5.4, which considers the modeling of 

the different sources of variability on an individual basis.  

 

It should be noted that the pattern calculated according to the above 

procedure actually is not the final realization of the demand pattern 

yet. After the calculation of this pattern still a final step is to be carried 

out. In this step a certain ‘random noise’ is added to it, in order to 

account for the intrinsic random variability in the travel decisions of 

individual travelers. This will be discussed in more detail in section 5.4 

as well. 
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5.3.3 Variability in the traffic supply characteristics 

 

Supply variables 

The output of the supply randomizer consists of tables with the 

stochastically generated values of a number of supply characteristics. These 

supply characteristics are the parameters that define the fundamental 

diagram discussed in section 5.2.3. Separate values are given for each cell 

of the road network and for every 5-minute interval of the day. 

 

All parameters of the fundamental diagram are considered in the 

randomization procedure. These are: 

- the free speed: the speed for an (almost)  zero traffic density; 

- the number of available lanes; 

- the critical density (per lane): the traffic density for which the 

maximum flow  (i.e. the free flow capacity) is achieved; 

- the critical speed: the speed connected to the critical density; 

- the free flow capacity (per lane): the maximum traffic flow that 

can be achieved under free flow conditions (equal to the 

product of critical density and critical speed); 

- the queue discharge rate from standstill (per lane): the outflow 

from a queue in which the traffic has come to a standstill; and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.7: Fitting of the combination 
of the three basic demand 
components to the three 
(stochastically generated) aggregated 
demand values 
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- the jam density (per lane): the density of traffic that has come 

to a standstill. 

 

An example of the variation of these parameters is given in Figure 5.8, 

which shows two stochastic realizations of the inflow and outflow 

curves of a cell. Note that the values expressed per lane can easily be 

converted into values for the roadway as a whole, by multiplication 

with the number of available lanes. 

 

It should be noted that not all of the above mentioned parameters are 

varied for each and every source of variability. Some sources of 

variability have significant effects on part of the parameters only, while 

leaving the others (more or less) unaffected. The jam density is an 

example of a parameter which is relatively constant. This parameter is 

only varied with the variations in vehicle population. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.8: Example of the variation 
introduced in the traffic supply 
characteristics. The upper diagram 
shows two stochastic realizations of 
the curve describing the outflow 
potential of a cell. The lower diagram 
shows the corresponding realizations 
of the curve describing the inflow 
potential of this cell.  
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Method of implementing the sources of variation 

As far as the free flow capacity, queue discharge rate from standstill 

and jam density are concerned (all of them expressed per lane), the 

different sources of variation are accounted for exactly in the manner 

described in subsection 5.3.1 (which can be considered the ‘standard’ 

manner). That is: 

- First, stochastic realizations of the different influencing 

conditions (corresponding to the different sources of variability) 

are generated. 

- Next, these stochastically generated influencing conditions are 

translated into correction factors on the different supply 

parameters, representing their effects on these parameters. 

- Finally, these correction factors are applied on the 

representative values of the parameters in question, in order to 

obtain the stochastic realizations of the latters. 

For the free flow capacities and queue discharge rates there is however 

one additional step to be taken. In this step a certain amount of 

‘random noise’ is added, in order to account for the intrinsic random 

variability in human driving behavior (similar to the ‘random noise’ that 

is added to the traffic demands, in order to account for the intrinsic 

random variability in the travel decisions of individual travelers). This 

will be discussed in more detail in a subsection of paragraph 5.4, which 

is specifically devoted to the modeling of this intrinsic random 

variability in driving behavior. 

 

For the number of available lanes the above procedure is different in 

the sense that no correction factors are used. The obvious reason for 

this is that the number of available lanes is not a continuous variable, 

but a discrete one. Instead of using a correction factor, for each 

stochastically generated influence factor it is determined how many 

lanes it blocks (if any). This number of lanes is then subtracted from the 

total number of available lanes. For the number of remaining lanes a 

minimum of one is assumed. This means that complete blockages are 

not considered. The reason for this is that in such situations an 

important feedback from traffic conditions to route choice would occur. 

Due to the fact that this feedback is not taken into account, the model 

would produce very unrealistic output for complete blockages. Also 

note that in reality in part of such cases the hard shoulder is opened to 

traffic, which results in a situation which actually is more or less 

equivalent to the modeled situation with one remaining lane. 

 

Also for the free speed the applied procedure is slightly different from 

the standard one given above. This is for the following two reasons: 

- The relative effects on the free speed are typically dependent 

on the ‘undisturbed’ free speed value (which in turn depends 

on the speed limit of the road), which means that these effects 

cannot be expressed in universally applicable correction factors.  

For example, the relative free speed reduction associated with 

road works will be much larger on 120 km/h roads than on 80 

km/h roads. Note that in this thesis, it is assumed that if a 
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temporary speed limit reduction is put in place, the reduced 

limit is strictly respected. In reality this is obviously not 

necessarily the case, since speed limits can be exceeded by road 

users. This effect is neglected here, however. It is not relevant 

for the research task at hand. 

- A specific characteristic of the free speed is that the effects of 

different simultaneous influence factors are often clearly not 

(fully) additive or multiplicative. Consider for example a 

situation in which a vehicle breakdown occurs at a location 

where road works are going on. Imagine that this vehicle 

breakdown would have caused a free speed reduction from 100 

to 90 km/h. However, due to the road works this free speed is 

already at a lower level of 70 km/h. In this situation it is rather 

unlikely that the vehicle breakdown would lead to any 

additional free speed reduction.   

Because of the fact that the way in which the speed effects are 

accounted for is different for the different sources of variability 

involved, no general description of this can be given here. Individual 

descriptions per source of variability are given in section 5.4. 

 

The correction factors for the critical density and critical speed are 

computed in a special way. By definition, the product of the critical 

density and the critical speed is equal to the free flow capacity. For this 

reason, the correction factors for the critical density and critical speed 

are calculated from the correction factor of the free flow capacity. 

More specifically, the correction factor of the free flow capacity is 

divided over the critical density and critical speed. Here the ratio of the 

corrections on critical density and critical speed is chosen differently for 

the different sources of variation involved. After all, some sources of 

variation can be assumed to have a larger effect on the critical density, 

while others will primarily affect the critical speed. In the model this is 
expressed in a special ‘division parameter’  for every source of 

variability i.  

 

Equations 6.1 and 6.2 indicate how the correction factors for the critical 
density and critical speed (indicated as  and ) can be 

calculated from the correction factor for the free flow capacity ( ), 

using this division parameter . Note that the product of both 

correction factors gives back the correction factor for the free flow 
capacity , as required by the definitions of the variables involved. 

 

 
 

 
 

The critical speed can obviously not be larger than the free flow speed. 

This therefore is not allowed in the model. If nessecary, this is 

compensated for by a larger correction factor on the critical density.  

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 5.1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 5.2 
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Undesirable side effect 

An important note to be made here is that the implementation of 

random noise in the free flow capacity value actually has a negative 

side effect, via the associated variations in the critical speed and critical 

density. These variations affect the course of the whole flow-density 

relation. This way, they introduce variations in the traffic flows in the 

cells, which are probably not very realistic. Although the final impact on 

the traffic conditions seems limited, it is not clear to which extent this 

leads to undesired model behavior. 

 

This effect can be prevented by implementing the random capacity 

noise only in the upper bounds on the inflow and outflow of cells. This 

means that this random noise is not accounted for in the basic flow-

density relation. The obvious drawback of this approach is, however, 

that inconsistencies are introduced in the fundamental diagram.  

 

Therefore another modeling approach was developed, which has no 

such inconsistencies. According to this modeling approach, the random 

noise in the free flow capacity corresponds to a variation along the free 

flow branch of the fundamental diagram, and not to a variation of the 

fundamental diagram itself. This is illustrated in Figure 5.9. In Appendix 

2 a more detailed description is given of this approach. 

 

 
 

In a small test this new modeling approach seemed to produce 

reasonable model behavior. It was considered too risky however, to 

apply this modeling approach in the model evaluations presented in 

chapter 8. For this, the behavior of this modeling approach would first 

have to be studied in much more detail, in order to find out whether it 

really results in a realistic traffic flow modeling. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 5.9: New modeling approach, 
according to which the random noise 
in the free flow capacity corresponds 
to a variation along the free flow 
branch of the fundamental diagram, 
instead of to a variation of the 
fundamental diagram itself. 
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5.4 Modeling of the different sources of variation 

In this section the modeling of the individual sources of variation will be 

considered in more detail. To each of these sources a separate 

subsection is devoted. These subsections are divided in two parts: one 

considering the modeling of the occurrence of the source of variability, 

and the other considering the modeling of its effects. 

5.4.1 Time of the day 

 

Classification: 

- Modeled as a CONTINUOUS influence factor, 

- with a DETERMINISTIC occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic DEMANDS. 

 

Special position within the set of all sources of variability: 

Is the only source of variability which is also taken into account 

in studies according to the more traditional approach (focusing 

on the representative situation). 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

 
 

 
 
 
 
 

None 

 

  

 

Procedure for simulating the time of the day: 

The total simulated time period of 24 hours is divided in 288 time 

intervals of 5 minutes. In the simulations these different time 

intervals are considered one after the other. 

 

Modeling of the effects: 

- The relation between the time of the day and the traffic 

demand is contained in three basic demand components, 

(depicted in Figure 5.6), which have to be fitted to certain origin-

destination specific demand levels, as explained in section 5.3.2. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.1: Modeled dependencies 
between the time of the day and 
other sources of variability 

Weather conditions 

Time of the day 

Events 

Driver population 

Vehicle population 

Darkness 

Road works 
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- These basic components have been calibrated in such a way that if 

they are fitted to the representative demand levels, an over the 

network aggregated demand pattern is obtained which 

approximately corresponds to the general passenger car mobility 

pattern provided in Figure 2.5. This calibration result is shown in 

the figure below. Note that at some points the calibrated pattern 

intentionally departs from the more general car mobility pattern. 

This is related to the following observations: 

- In motorway traffic the onset of the morning peak 

typically occurs earlier than reflected in the general car 

mobility pattern.  

- In motorway traffic the difference between morning 

and evening peak is assumed to be smaller than in the 

overall car mobility pattern. Therefore, a value of 1.10 

was used for the ratio between the evening and 

morning peak demands, rather than a value of 1.18. 

- On motorways the traffic demands typically reach their 

peak in the middle of the peak periods (or even 

before), rather than in the second hour of these. 

Finally it should be mentioned that the ratio between the total 

peak demand and the total off-peak demand has been assumed 

at 0.55, corresponding to an average peak hour fraction 

(relative to the 24h-demand) of 8.9%. 
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5.4.2 Day of the week 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a DETERMINISTIC occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic DEMANDS. 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

 
 

 
 
 
 
 

None 

 

  

 

Procedure for selecting the day of the week: 

In the series of simulation runs, the different days of the week 

are simulated one after the other. That is, every first simulation is 

considered to be a Monday, every second one a Tuesday, and so 

on. After the seventh simulation (a Sunday) the cycle restarts, 

meaning that the eighth simulation is considered to be a Monday 

again. This approach ensures that each day of the week is 

simulated equally often, which improves the statistical 

accuracy/reliability of the final results (as compared with a 

situation in which the day of the week is randomly drawn).74 

 

                                                   
74 Note that if multiple sources of variation were to be dealt with in this deterministic way, 

there would be a risk of introducing artific ial dependencies between these, which could cause 

a bias in the final results. Since the day of the week is the only source of variation which is 

treated in such a way, this will not pose any problems, however. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.2: Modeled dependencies 
between the day of the week and 
other sources of variability 

Special days 

Day of the week 

Vacations 

Driver population 

Vehicle population 

Events 

Road works 
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Modeling of the effects: 

After the selection of a day of the week, the peak and off-peak 

traffic demand levels are adjusted with the day-dependent 

correction factors shown below. These correction factors are 

based on the values indicated Table 2.5. A shortcoming of 

these data is however that one combined correction factor is 

given for the peak periods of the day, while especially for 

Fridays distinctly different correction factors should be used for 

the morning peak demand on the one hand and the evening 

peak demand on the other. Therefore, assumptions have been 

made with respect to these differences. 

   

 

Literature does not provide information on the relative traffic 

demands on weekend days (as compared with the traffic 

demands on workdays). Based on some very limited empirical 

data from a motorway in the urban agglomeration of Western 

Holland, the following values have been assumed: 
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Obviously, not only the traffic demand levels have to be adapted 

to the day of the week, but their patterns as well. This is 

implemented in the following way:  

- for Monday to Thursday the same basic demand 

components are used as for the representative situation 

(see Figure 5.6); 

- for Friday other basic demand components are used 

(depicted in the figure below), to account for the fact that 

Fridays have a different off-peak pattern (see chapter 2);  

- for Saturday and Sunday other demand patterns are used 

(based on some empirical data), which do not have 

morning and evening peaks and are not composed of 

different basic components (see the second figure below). 
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5.4.3 Month of the year 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTICALLY GENERATED occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic DEMANDS. 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

 
 

 
 
 
 
 

None 

 

  

 

Procedure for randomly selecting the month of the year: 

The month of the year is drawn from a discrete probability 

distribution function, which reflects the differences in the lengths 

of the months. 

 

Modeling of the effects: 

After the random selection of a month, the peak and off-peak 

traffic demand levels are adjusted with the month-dependent 

correction factors shown in Figure 2.7 (peak) and Figure 2.8 

(off-peak). It is assumed that for the weekend day traffic 

demand the same correction factors can be used as for the off-

peaks on workdays. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.3: Modeled dependencies 
between the month of the year and 
other sources of variability 

Special days 

Month of the year 

Vacations 

Weather conditions 

Darkness 

Events 

Road works 
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5.4.4 Vacations 
 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTICALLY GENERATED occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic DEMANDS. 
 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   

 

Procedure for randomly generating vacation 

Whether or not the simulated day falls within a vacation period is 

randomly determined using a ‘vacation probability table’. This 

table contains a separate vacation probability value for every 

single combination of month of the year and day of the week. In 

this table account has been made for: 

- the cyclical shift in the vacation data (which for example 

results in the fact that January has one or two ‘vacation 

Sundays’ every year, but a ‘vacation Monday’ only twice 

in seven years); and 

- the staggering of the summer vacation period. 

A graphical representation of this table is shown below. 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.4: Modeled dependencies 
between vacations and other sources 
of variability 

Month of the year 

Vacations 

Day of the week 

Special days 

Events 
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Modeling of the effects: 

Depending on the outcome of the above, the peak and off-

peak traffic demands are reduced or increased by the 

vacation/non-vacation correction factors given in Figure 2.7 

(peak) and Figure 2.8 (off-peak). It is assumed that the 

weekend day traffic demands are not affected. Any possible 

differences between different vacation periods are ignored in 

the model.  

5.4.5 Special days (public holidays, long weekend days, vacation peaks) 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTICALLY GENERATED occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic DEMANDS. 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   

 

Procedure for simulating the occurrence of a special day: 

Whether or not the simulated day is a special day of a certain 

type is randomly determined using a four-dimensional 

‘probability cube’. This probability cube defines the discrete 

cumulative probability distribution function of the type of special 

day (including the category ‘no special day’), conditional on the 

day of the week, the month of the year and the ‘vacation 

situation’. 

This is illustrated in the two figures below. In these figures, the 

first two dimensions of the probability cube (representing the 

month of the year and the day of the week) are on the 

horizontal axis. The third dimension (representing the ‘vacation 

situation’) is reflected in the distinction between the upper and 

lower figure. Finally, the fourth dimension (representing the 

different categories of special days) is indicated by using different 

colors. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.5: Modeled dependencies 
between special days and other 
sources of variability 

Events 

Month of the year Special days 

Day of the week 

Vacations 

Driver population 

Vehicle population 
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As shown in the figures, 13 different categories of special days 

are distinguished. These are: 

Cat.1: Public holidays without a vacation peak in traffic 

Cat.2: Public holidays with a vacation departure peak in traffic  

Cat.3: Public holidays (Mon/Tue/Wed/Thu/Sun) or normal 
Sundays with a vacation return peak in traffic 

Cat.4: Public holidays (Fri) with a vacation return peak in traffic 

Cat.5: Public holidays (Sat) with a vacation return peak in traffic 

Cat.6: ‘Semi-official’ holidays / long weekend days without a 
vacation peak in traffic 

Cat.7: ‘Semi-official’ holidays (Fri) with a vacation departure peak 

Cat.8: ‘Semi-official’ holidays (Fri) / long weekend Fridays with a 
vacation return peak in traffic 

Cat.9: ‘Semi-official’ holidays (Mon/Tue) with a vacation return 
peak in traffic 

Cat.10: Normal workdays with a vacation departure peak in traffic  

Cat.11: Normal Saturdays with a vacation departure peak in traffic 

Cat.12: Normal Fridays with a vacation return peak in traffic 

Cat.13: Normal Saturdays with a vacation return peak in traffic 

It should be noted here that the relative importance75 of these 

different categories of special days, considered on an individual 

basis, will obviously be limited, because of their limited 

frequencies of occurrence. The distinction between these 

different categories is however a prerequisite for obtaining a 

reasonable aggregate influence. For this we cannot simply 

consider one ‘average’ category of special days, because of the 

                                                   
75 in terms of their influence on the travel time statistics, or other congestion indicators. 
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fact that the effects of the different special days are very 

dissimilar. 

 

Modeling of the effects: 

In the model, the different categories of special days are dealt 

with in the following ways:  

Cat.1: Modeled as a Sunday (which means that both the demand 
level and the demand pattern are assumed equal to those 
of Sunday). 

Cat.2: Modeled as a Sunday, with a correction factor of 1.15 on 
the normal Sunday demand level (to account for departing 
vacation traffic). 

Cat.3: Modeled as a Sunday, with a correction factor of 1.20 on 
the normal Sunday demand level (to account for returning 
vacation traffic). 

Cat.4: Modeled as a Sunday, with a correction factor of 1.075 on 
the normal Sunday demand level (to account for returning 
vacation traffic). 

Cat.5: Modeled as a Sunday, with a correction factor of 1.10 on 
the normal Sunday demand level (to account for returning 
vacation traffic). 

Cat.6: Modeled as the average of the workday concerned and 
Saturday. 

Cat.7: Modeled as the average of Friday and Saturday, where the 
off-peak and evening peak demands of Friday are adjusted 
with correction factors of 1.10 and 1.15 respectively (to 
account for departing vacation traffic). 

Cat.8: Modeled as the average of Friday and Saturday, where the 
demand level of Friday is adjusted with a correction factor 
of 1.05 and the demand level of Saturday with a correction 
factor of 1.075 (to account for returning vacation traffic). 

Cat.9: Modeled as the average of the workday concerned 
(Monday/Tuesday) and Saturday, where the demand level 
of Saturday is adjusted with a correction factor of 1.20 (to 
account for returning vacation traffic). 

Cat.10: Modeled as having the demand pattern of a Friday, while 
keeping its original demand level (i.e. not necessarily that of 
a Friday), although the off-peak and evening peak demand 
levels are adjusted with correction factors of 1.10 and 1.15 
respectively (to account for departing vacation traffic). 

Cat.11: Modeled with a correction factor of 1.175 on the demand 
level (to account for departing vacation traffic). 

Cat.12: Modeled with a correction factor of 1.05 on the demand 
level (to account for returning vacation traffic). 

Cat.13: Modeled with a correction factor of 1.10 on the demand 
level (to account for returning vacation traffic). 
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5.4.6 Weather conditions 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTIC way of occurrence, 

- and NETWORK-WIDE effects 

- on both the traffic DEMAND and SUPPLY characteristics. 

 

Stochastically generated variables: 

- PRESENCE OF (SIGNIFICANT) PRECIPITATION per time-interval of the day 
 (yes / no) 

- TYPE OF PRECIPITATION (one for all precipitation of that day) 
(moderate snow / heavy snow / black ice / moderate rain / heavy rain / fog) 

- SUMMERY WEATHER CONDITIONS on the simulated day 
(yes / no) 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   

 

Probability input data: 

- Monthly frequencies of days with significant precipitation (>1mm): 

 

- Monthly percentages of time with precipitation: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.6: Modeled dependencies 
between weather conditions and 
other sources of variability 

Month of the year 

Weather conditions 

Time of the day 

Incidents 

Events 
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- Assumed correction factor for converting the percentages of 

time with precipitation to percentages of time with significant 

precipitation, for days with more than 1 mm:  0.05/0.0725. 

- Monthly distributions of precipitation type: 

 

- Monthly frequencies of summery days, relative to the total amount 

of day without significant precipitation: 

 

- Montly frequencies of days with fog, relative to the total amount 

of day without significant precipitation: 
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Procedure for simulating the occurrence of specific weather conditions: 

- STEP 1. PRESENCE OF SIGNIFICANT PRECIPITATION PER 5-MINUTE INTERVAL: 

- Modeled as a Markov Chain 76  with the following two 

possible states: 

 Significant precipitation 

 No significant precipitation 

 

- Month-dependent transition probabilities (P1→2  and P2→1), 

calculated in such a way that: 

 the resulting monthly frequencies of days with 

significant precipitation are equal to those given 

above, and  

 the resulting monthly percentages of time with 

significant precipitation are equal to those given 

above (multiplied with the correction factor that 

was also given above). 

- STEP 2. PRECIPITATION TYPE: 

- Random selection from the month-dependent discrete 

probability distribution given above. 

- The selected precipitation type is assumed to apply to all 

precipitation on the simulated day. 

- STEP 3. SUMMERY WEATHER CONDITIONS: 

If significant precipitation was generated for one or more 

of the time intervals of the simulated day, this day is 

assumed not to be a summery one. If no significant 

precipitation was generated for the simulated day, the 

monthly probabilities given above are used to randomly 

determine whether it is a summery day or not. 

- STEP 4. FOG 

- If significant precipitation was generated for one or more 

time intervals of the simulated day, it is assumed that no 

fog occurs on this day. If no significant precipitation was 

generated for the simulated day, the monthly 

probabilities given above are used to randomly determine 

whether or not fog occurs on this day. 

- If fog is simulated to take place, it is assumed to occur in 

one unbroken period, starting sometime during the night 

                                                   
76 In order to account for the temporal coherence in precipitation: precipitation in time interval 

i is more likely to occur if precipitation occurred in time interval i-1, than if no precipitation 

occurred in time interval i-1 (and the other way around).  
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and ending within a certain (month-dependent) period of 

time after sunrise. 

- The start time of fog is randomly drawn from the 

following probability density function: 

  
where ts (0 ≤ ts ≤ dnight) is the time at which the fog 

starts, relative to the time of sunset, and dnight is the 

(month-dependent) length of the night (i.e. the time 

between sunset and sunrise). 

- The end time of fog is randomly drawn from the 

following probability density function: 

  
where te (0 ≤ te ≤ te_max) is the time at which the fog 

ends, relative to the time of sunrise, and te_max is its 

(month-dependent) maximum value. 

 

Modeling of the effects: 

- EFFECTS ON THE TRAFFIC DEMANDS: 

- In case of rain for one hour or more between 8 and 

19h, the off-peak workday traffic demand is reduced by 

2%, and the 24h weekend demand by 5%. The peak 

demands are not reduced in case of rain. 

- Demand reductions for other adverse weather 

conditions are indicated in the table below. 

Type of weather Time window Duration Demand effect 

Moderate snow 5:30 – 8:30 ≥ 1 

interval 

Morning peak -5% 

Evening peak -2.5% 

15:00 – 19:00 ≥ 1 

interval 

Morning peak -2% 

Evening peak -2.5% 

8:00 – 19:00 ≥ 1 h. Off-peak -7% 

Weekend -18% 

Heavy snow 5:00 – 8:30 ≥ 1 

interval 

Morning peak -20% 

Evening peak -15% 

15:00 – 19:00 ≥ 1 

interval 

Morning peak -5% 

Evening peak -8% 

8:00 – 19:00 ≥ 1 h. Off-peak -30% 

Weekend -50% 

Black ice 6:00 – 8:30 ≥ 1 

interval 

Morning peak -4% 

Evening peak -1% 

15:00 – 19:00 ≥ 1 

interval 

Morning peak -0.5% 

Evening peak -1% 

8:00 – 19:00 ≥ 1 h. Off-peak -5% 

Weekend -15% 

- In case of a summery day, the off-peak workday traffic 

demand is increased by 1.5% and the 24 h weekend 

demand by 5%. The peak demands are not adjusted for 

summery days.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.7: Modeled demand effects 
of adverse weather conditions (other 
than rain) 



 
 
 

 

 

 
 172 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

- EFFECTS ON THE TRAFFIC SUPPLY CHARACTERISTICS: 

- The free speeds in adverse weather are calculated as: 

vFree = vFree_basic + fweather · (vFree_nom – vFree_basic), 

where vFree is the free speed in adverse weather, vFree_nom 

is the nominal free speed value (i.e. in favorable 

weather), vFree_basic is a certain weather-dependent 

reference level, and fweather is a weather-dependent 

factor expressing which part of the difference between 

vFree_nom and vFree_basic remains under the adverse weather 

conditions. Values for vFree_basic and fweather are indicated 

in the table below. 

Type of weather vFree_basic (km/h) fweather 

Moderate snow 70 0.75 

Heavy snow 50 0.15 

Black ice 70 0.80 

Moderate rain 80 0.88 

Heavy rain 60 0.60 

Fog 60 0.70 

- In case of heavy snow, the number of available lanes is 

assumed to be reduced by half. 

- The capacities are adjusted with the following 

correction factors: 

 

In the absence of data regarding any possible 

differences in the effects on the free flow capacity on 

the one hand, and the queue discharge rate on the 

other, no distinction is made between these. 

- In line with (Hranac et al, 2006), it is assumed that the 

largest part of the weather effect on the free flow 

capacity corresponds to an effect on the critical speed 

(rather than on the critical density). Therefore, a 

division parameter zweather (see subsection 5.3.3) of 0.8 

is used. 

5.4.7 Low sun 

 

The possible influences of low sun (see chapter 2) are not taken into 

account in the model. Too little is known about its effects. Furthermore, 

there will be a strong dependency in these effects on the orientation of 

the road, and the season-dependent positioning of the sun. These 

aspects cannot easily be incorporated into a model. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.8: Values of the parameters 
vFree_basic and fweather , which are used 
for the modeling of the effects of 
adverse weather conditions on the 
free speeds. 
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5.4.8 Darkness 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a DETERMINISTIC way of occurrence, 

- and NETWORK-WIDE effects 

- on the traffic SUPPLY characteristics. 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   
 

 

None 

 

 

Procedure for simulating the occurrence of darkness: 

For all time intervals before the monthly average time of sunrise 

and after the monthly average time of sunset, conditions are 

assumed to be dark.  

 
 

Modeling of the effects: 

- Any possible effects on the free speeds are neglected. 

- For dark conditions the capacities are adjusted with a correction 

factor of 0.985 (corresponding to a 1.5% reduction). In the 

absence of data regarding any possible difference in the effect 

on the free flow capacity on the one hand, and the queue 

discharge rate on the other, no distinction is made between 

these. 

- It is assumed that the effect on the free flow capacity is 

distributed over the critical speed and the critical density in the 

same way as the effects of adverse weather conditions. 

Therefore, a division parameter zdarkness = zweather = 0.8 is used. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.9: Modeled dependencies 
between darkness and other sources 
of variability 

Month of the year 

Darkness 

Time of the day 
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5.4.9 Driver population 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a DETERMINISTIC way of occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic SUPPLY CHARACTERISTICS. 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   

 

Procedure for simulating the variation in the driver population: 

- Four typical driver populations are distinguished: 

- Peak driver population (largely commuter traffic) 

- Off-peak driver population (a mix of mainly: social traffic, 

leisure traffic, commercial traffic and commuter traffic) 

- Saturday driver population (largely social and leisure 

traffic) 

- Sunday driver population (almost exclusively social and 

leisure traffic) 

Here the Saturday driver population is assumed to be more 

experienced (i.e. better acquainted with the local traffic 

situations) than the Sunday driver population. This assumption is 

based on the supposition that people’s activity patterns are more 

regular on Saturdays than on Sundays, owing to some typical 

recurrent Saturday activities as shopping and sporting. On 

Sundays probably a larger part of the trips is of an occasional 

nature. 

- Depending on the simulated day of the week and the time of the 

day, one of these different driver populations is selected, as 

indicated in the table below: 

Day of the week Time window Type of driver population 

weekday 6:30 – 9:30 Peak drivers population 

15:30 – 18:30 Off-peak drivers population 

Saturday whole day Saturday drivers population 

Sunday whole day Sunday drivers population 

- If a special day is simulated, the type of driver population might 

have to be corrected, depending on the type of special day. 

These corrections are as follows: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.10: Modeled dependencies 
between the composition of the 
driver population and other sources 
of variability 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.11: Selection of a driver 
population as a function of the day 
of the week and the time of the day 

Day of the week 

 

Driver population 

Time of the day 

Special days 

Incidents 
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Type of special day Time window Type of driver population 

1 – 5 whole day Sunday drivers population 

6 – 9 whole day Off-peak drivers population 

10 15:30 – 18:30 Off-peak drivers population 

12 whole day Off-peak drivers population 

- Driver population differences between vacation and non-

vacation periods are assumed to be negligible. 

  

Modeling of the effects: 

- Any possible effects on the free speeds are neglected. 

- The capacities are adjusted with the following correction 

factors: 

 

The peak drivers population is associated with the highest 

capacity values. Such drivers typically are very experienced, 

probably resulting in a more efficient driving behavior. In the 

absence of information regarding any possible difference in the 

effect on the free flow capacity on the one hand, and the 

queue discharge rate on the other, no distinction is made 

between these. 

Note that a correction factor with value one is used for the 

peak drivers population. This actually means that this 

population is considered the ‘representative one’. The reasons 

for this are that capacities are mainly measured during peak 

periods, and that models (or network files) are usually 

calibrated on a peak period. As a result, the default capacities 

of any model or network file are likely to represent the values 

for the peak drivers population. 

- In the absence of any information on this, it is assumed that the 

effect on the free flow capacity is equally distributed over the 

critical speed and the critical density. Therefore, a division 

parameter zdrivers = 0.5 is used. Schedule  

5.4.10 Vehicle population 

 

Classification: 

- Modeled as a CONTINUOUS influence factor, 

- with a DETERMINISTIC way of occurrence, 

- and a NETWORK-WIDE effect 

- on the traffic SUPPLY CHARACTERISTICS. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.12: Corrections of the 
selected driver population for certain 
types of special days 
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Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   

 

Procedure for simulating the variation in the vehicle population: 

In fact, the only appropriate way to model the influence of 

variations in the vehicle population would be to use a dynamic 

traffic simulator which explicitly considers passenger car and 

freight traffic as two individual, interacting traffic flows. 

JDSMART (i.e. the traffic simulator used here) considers only one 

type of vehicles, however 77 . Therefore, the influence of the 

variability in the vehicle population had to be modeled in another 

(less optimal) way. In this alternative approach the vehicle 

composition is assumed to be uniform across the entire network, 

and to vary over time according to some predetermined pattern. 

Depending on the simulated day of the week, one out of three 

different patterns is chosen. These different patterns are shown 

in the figure below. 
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77 Note that extending JDSMART to a multi-vehicle-class model in fact would not be that 

difficult, since it is already a multi-user-class model. In the current version these different user 

classes are however not related to different vehicle types, but to the different destinations of 

the vehicles involved. Consequently, the only adjustment required would be to extend this 

concept of considering multiple user classes to the vehicle type. This was however not possible 

within the scope of this project. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.13: Modeled dependencies 
between the composition of the 
vehicle population and other sources 
of variability 

Day of the week 

 

Vehicle population 

Time of the day 

Special days 

Incidents 
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As shown in the figure, for Saturdays and Sundays constant truck 

shares of 2 and 3 percent are assumed. For weekdays a (much 

higher) time-varying truck percentage is used. The pattern of this 

variation has been obtained in the following three steps: 

- For the total truck traffic demand in the network, the 

following temporal pattern was assumed: 
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- Based on some empirical data, a 24-hours truck fraction 

of 14.5% was assumed. 

- By combining these two with the (representative) 

temporal pattern of the overall traffic demand in the 

network (depicted in the figure below), the temporal 

pattern of the truck fraction is found. 
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Note that due to this modeling approach, the short-term local 

variations in traffic composition are not taken into account. Since 

these variations are actually observed to be considerable, this is 

not a very desirable situation. It is estimated however that it will 

not be too detrimental to the overall model results, since the 

extent to which the variance of free flow capacities is attributable 

to variations in truck percentage is empirically found to be 

relatively small (Geistefeldt, 2009).  
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For certain types of special days the temporal pattern of the 

vehicle population is adapted: 

- For categories 1-5 the pattern is assumed to be equal to 

that of Sundays. 

- For categories 6-9 the truck traffic demand is assumed to 

be unaffected, while the total traffic demand is reduced 

(see section 5.4.5). This results in the following modified 

pattern: 
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The effects of vacations and any possible variations with the 

months of the year are not considered.  

 

Modeling of the effects: 

- Any possible effects on the free speeds are neglected. 

- The effects on the capacities and jam densities are expressed in 

terms of a ‘passenger car equivalency factor’ (PCE). This factor 

indicates the number of passenger cars that one truck could be 

considered to be equivalent with (not only considering its 

physical dimensions, but also its operating capabilities). For the 

free flow capacities the commonly used PCE-value of 1.5 is 

applied. In congested conditions the impact of heavy vehicles 

turns out to be larger than in free flow conditions (see section 

2.2.5). Therefore, for the queue discharge rates (from 

standstill) a higher PCE-value is used. For this a value of 2.0 is 

assumed. For the jam densities a PCE-value of 2.0 is used as 

well. 

- Using these PCE-values, the correction factors on the capacities 

and jam densities can now be calculated as: 

 
In this equation  represents the truck fraction 

simulated for time interval t (according to one of the truck 
fraction patterns given above).  represents the 

representative truck fraction, corresponding to the default 

capacity values in the model or network file. Since these default 
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capacity values typically have been measured and/or calibrated 

for peak periods, this representative truck fraction typically is 

associated with peak periods as well. Because of the fact that 

the test network used in this project was originally calibrated on 

a certain period around the morning peak, here the 

representative truck fraction is taken equal to the average truck 

fraction during that period, corresponding to a value of 17.2%. 

An example of the resulting correction factors (for normal 

weekdays) is shown in the figure below: 

 

- It seems reasonable to assume that the vehicles-effect on the 

free flow capacity is in its entirety associated with an effect on 

the critical density (corresponding to the critical speed being 

unaffected). Therefore, a division parameter zvehicles = 0 is used. 
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5.4.11 Events 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTIC way of occurrence, 

- and ORIGIN-DESTINATION SPECIFIC effects 

- on traffic DEMANDS. 
 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   
 

 
 
 
 
 

None 

 

 

Input data: 

The influence of events is not easily incorporated in a model. 

After all, there is no generally applicable frequency of occurrence 

and no generally applicable demand effect either. In real life 

widely varying frequencies and effects are found. This means 

that inevitably there will be a certain degree of arbitrariness in 

the modeling of events. This does not mean, however, that we 

might just as well use some assumed (i.e. fictitious) frequencies 

and effects. In this case there would be a very real risk that these 

frequencies and effects (or their combinations) would be out of 

their ‘realistic range’, resulting in unrealistic simulation results. 

Because of this, we are more or less forced to use rather specific 

real-life event data, relating to the particular network considered 

in the model calculations, or at least to a comparable network. In 

view of the fact that in this project the motorway network 

around the Dutch city of Rotterdam was used as a test network 

(see chapter 8), here event data of the Rotterdam area have 

been considered. This area includes four of the 45 most traffic 

generating event locations in the Netherlands (Meeuwissen et al, 

2004). These are: 

- Ahoy (a multifunctional events accommodation), 

- De Kuip (a football stadium), 

- Blijdorp (a large zoo), and 

- Rotterdam’s city center. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.14: Modeled dependencies 
between events and other sources of 
variability 

Day of the week 

Events 

Time of the day 

Vacations 

Special days 

Month of the year 

Weather conditions 
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For these four locations event frequency data have been 

obtained from a number of event calendars 78 . Data regarding 

their traffic generation have been derived from (Meeuwissen et 

al, 2004). 

 

Procedure for simulating the occurrence of events: 

- Events are randomly selected using the frequency data 

mentioned above. These frequency data have been translated 

into conditional event probabilities. The conditioning is with 

respect to: 

- the month of the year, 

- the day of the week, 

- the ‘vacation situation’, and 

- the special day category (including the category ‘no special day’) 

Fifteen different categories of events are considered. These 

categories are different in: 

- location (Blijdorp, De Kuip, Ahoy or Rotterdam Center), 

- time of the day (evening or daytime), 

- pattern of traffic generation (peaked or more evenly 

spread out over time), and/or 

- type of event (corresponding to a certain volume of 

generated traffic). 

An overview of all different categories of events is given in the 

table below: 

Event 
category 

Location 
 

Time of 
day 

Type of traffic 
generation 

Type of event 
 

      1 Blijdorp daytime spread busy day 

      2 a De Kuip daytm./even. peaked league match 

         b De Kuip evening peaked int. match / concert 

      3 a Ahoy evening peaked show / sporting event /…  

         b Ahoy daytime peaked show / sporting event /… 

         c Ahoy daytime spread exhibition / fair 

      4 a City center daytime spread very large weekend event 

         b City center evening peaked very large evening event 

         c City center daytime spread very large weekday event 

         d City center daytime spread large daytime event 

         e City center evening peaked large evening event 

         f City center daytime peaked congress 

         g City center evening peaked other evening events 

         h City center afternoon peaked other weekend events 

         i City center morning peaked other weekend events 

The model takes into account that the events of categories 2a 

and 2b are mutually exclusive (because of sharing the same 

accommodation). The same applies to the events of categories 

3b and 3c. All other combinations are possible, because of the 

events being separated in time and/or accommodation. 

                                                   
78 www.ahoy.nl; www.dekuip.nl; www.blijdorp.nl; www.rotterdam.info; www.dedoelen.nl  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.15: Overview of the different 
categories of events 
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It should be noted that the relative importance79 of the individual 

categories will obviously be limited, because of their limited 

frequencies of occurrence. The distinction between these 

different categories is however essential for obtaining a 

reasonable aggregate influence. For this we cannot simply 

consider one ‘average’ category of events, because of the fact 

that the effects of the different events are very dissimilar. 

- After the random selection of events, it is checked whether the 

weather conditions are not too unfavorable for these events. In 

case of heavy snowfall, outdoor events are modeled to be 

cancelled. 

 

Modeling of the effects: 

- Every event category has the following attributes: 

- the volume of traffic generated (in veh/h), 

- the start time of the ‘arrival flow’, 

- the start time of the ‘return flow’, and 

- a set of factors expressing the relative shares of the event 

traffic that come from the external motorway 

origin/destination zones. 

Furthermore, each event category is associated with one or two 

of the following demand patterns (one for the ‘arrival flow’ and 

possibly another one for the ‘return flow’): 

 

Note that the return flow of events with well-defined start and 

end times is assumed to be more peaked than the 

corresponding arrival flow. Approximately 90% of the 

returning traffic leaves within 30 minutes time. For the arriving 

traffic, this 90% is distributed over a period which is twice as 

long (i.e. 60 minutes). For the events with less distinct start and 

end times (like exhibitions and fairs) it is assumed that 90% of 

the traffic occurs within two hours time. 

                                                   
79 in terms of their influence on the travel time statistics, or other congestion indicators  
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The figures below show the traffic volumes associated with the 

different types of events, as well as their ‘scheduling’. 

 

 

In case of adverse weather conditions, the amounts of event 

traffic are reduced. Here the reductions for outdoor events 
obviously are larger than those for indoor events. In case of 
rainy weather, the traffic demands for indoor events are even 
not adjusted at all, or corrected in the opposite direction (i.e. 
increased, instead of decreased). For days with summery 
weather conditions, the traffic demands generated by outdoor 

events are assumed to be larger. 

An important aspect in the modeling of large-scale events is 
that the associated traffic flows cannot simply be distributed 
over the origins/destinations in proportion to the normal origin-
destination traffic demands. This would lead to a relatively large 
part of the event traffic having its origin in nearby zones. For 

large-scale events this is clearly not realistic. For such events a 
relatively large part of the attracted traffic comes from other 
regions, or even from other parts of the country. This is 
accounted for in the model by explicitly specifying the shares of 
the event traffic coming from the external motorway zones. 
Only the remaining traffic is then distributed over the 

(remaining) zones in proportion to the normal demands. 

- By combining all elements mentioned above, for every event its 
demand effect per origin/destination can be evaluated. These 
demand effects can then be superimposed on the origin-
destination demand patterns. An example of an origin-
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destination demand pattern after the superposition of an event 
effect is shown below. 
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5.4.12 Incidents 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTIC way of occurrence, 

- and LOCAL effects 

- on the traffic SUPPLY characteristics. 

 

Stochastically generated variables: 

- OCCURRENCE OF ACCIDENTS per cell of the network and time-interval 

of the day 

- OCCURRENCE OF VEHICLE BREAKDOWNS per cell of the network and 

time-interval of the day 

- DURATION OF INCIDENTS 

- NUMBER OF BLOCKED LANES 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   
 

 
 
 

None 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.16: Modeled dependencies 
between incidents and other sources 
of variability 

Weather conditions 

Events 

Vehicle population 

Local amount of traffic 

Driver population 

All sources of variability 
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Probability input data: 

- In the model only the two main types of incidents are considered: 

vehicle breakdowns and accidents. 

- Based on literature, the following rates of occurrence are assumed 

for these two categories of incidents: 

- 1.5E-6 vehicle breakdowns per vehicle-kilometer 

- 0.5E-6 accidents per vehicle-kilometer80 

- These average rates of occurrence are corrected for the: 

- driver population  (accident rate only): 

Type of driver population Correction factor on accident rate 

Peak drivers population 0.93 

Off-peak drivers population 1.02 

Saturday drivers population 1.10 

Sunday drivers population 1.10 

- vehicle population  (both incident rates): 

Type of vehicle 
Correction factor 

accident rate 
Correction factor 
breakdown rate 

Passenger car 0.98 0.98 

Truck 1.17 1.17 

- weather conditions  (accident rate only): 

Weather conditions Correction factor on accident rate 

No adverse weather 0.95 

Snow   0.9581 

Black ice 2.5 

Fog 1.9 

No corrections are made for: 

- road works (too much uncertainty with regard to their 

influence) 

- darkness (visibility is worse in darkness, but on the other 

hand vehicles are better distinguishable due to their lights) 

- low sun (too complicated to be accounted for, due to the 

dependencies on the orientation of the road, the season-

dependent positioning of the sun, and the cloud 

coverage) 

- traffic conditions 82 (too little known on the quantitative 

relations between traffic conditions and accident rate (and 

vehicle breakdown rate) for Dutch circumstances) 

                                                   
80 comprising both accidents involving injuries and accidents involving property damage only 

81 In practice, both increases and decreases of accident rates are observed for snowy weather. 

On the one hand, visibility and car controllability are reduced (which increases the accident 

rate), but on the other hand road users drive more carefully (which decreases the accident 

rate). 

82 Note that the dependency on traffic conditions is partly accounted for already by expressing 

the rates of occurrence in terms of the number of occurrences per vehicle-kilometer. 
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- Based on the empirical distribution depicted in Figure 2.20 and 

assumed differences between accidents on the one hand and 

vehicle breakdowns on the other, the following cumulative 

probability distribution functions have been assumed for the 

incident duration: 
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- Based on the data provided in Figure 2.21 and some further 

assumptions, the following cumulative probability distributions have 

been assumed for the incident severity (expressed in the number of 

lanes that is blocked): 

 

The interdependency between incident duration and incident 

severity (expressed in the number of lanes that it blocks) is not 

accounted for in the model. 

 

Procedure for simulating the occurrence of incidents: 

- In order to account for the fact that incidents are more likely to 

occur when more traffic is present, the occurrence of incidents 

is simulated in a traffic-dependent way. This means that 

incidents are not generated prior to the simulation of the traffic 

operations (as all other sources of variability), but 

simultaneously with this simulation. 

- After each simulated 5-minute interval it is randomly 

determined for each of the cells whether or not an accident or a 

breakdown event occurred in that particular time-interval. For 

this the model keeps track of the amounts of vehicle-kilometers 
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that are traveled within the different cells. Assuming 

independency in the accident occurrence between the 

individual vehicle-kilometers, the probability of occurrence of 

an accident is then calculated as: 

 

In this formula,  is the probability of the occurrence of 

an accident in cell i within time-interval t; d(i,t) is the amount 

of vehicle-kilometers traveled in cell i in time-interval t; and pacc 

is the accident rate per vehicle kilometer, for which a value was 

given above. 

Similarly, the probablility of occurrence of a vehicle breakdown 

event is calculated as: 

 
By confronting these probabilities with random numbers 

between zero and one, incidents can randomly be generated 

then. 

- For every newly generated incident the procedure is now as 

follows: 

- The duration of the incident is randomly drawn from 

the cumulative probability distribution function of the 

duration given above. The end time of the incident can 

then be calculated as the summation of its start time 

(which equals the current time in the simulation) and 

duration. 

- The severity of the incident (i.e. the number of lanes 

that it blocks) is randomly drawn from the cumulative 

distribution function of the incident severity given 

above. 

- All data of the incident are stored in a ‘dynamic incident 

table’. This table contains all incidents that are currently 

‘active’. After each time interval it is checked whether 

the table contains incidents that have ‘expired’. As soon 

as an incident has expired, it is removed. 

- In order to account for the effect that an incident 

diverts the attention of the drivers on the roadway in 

the opposite direction (which significantly reduces the 

capacity over there: see section 2.2.5) for that roadway 

an (artificial) incident is generated as well. Obviously, 

the duration of this artificial incident is equal to that of 

the factual incident where it belongs to. 

 

Modeling of the effects: 

Prior to each simulated 5-minute interval, it is checked whether 

the ‘dynamic incident table’ contains any incidents. If that is 

indeed the case, for all incident cells the supply characteristics 

are adjusted in the following ways: 

- For incidents on the hard shoulder, the speed limit (and 

thus the free speed) is assumed to be reduced to 90 km/h. 
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For incidents blocking one or more lanes, a reduction to 70 

km/h is assumed. For the ‘artificial’ incidents (representing 

the effects of incidents on the roadway in the opposite 

direction) no speed reduction is applied. 

- The number of available lanes is reduced by the 

stochastically generated number of lanes that are blocked 

by the incident. Obviously no reductions are associated 

with the ‘artificial’ incidents. 

- The queue discharge rates (from standstill) of the remaining 

lanes are adjusted with the following correction factors: 

 

These assumed correction factors are based on the data of 

Knoop (2009) discussed in section 2.2.5. In the absence of 

data regarding the effects on free flow capacities, for these 

capacities the same correction factors are assumed to apply. 

- For the ‘artificial’ incidents (representing the effects of 

incidents on the roadway in the opposite direction) the 

capacities are adjusted with the following correction factors 

(reflecting the effects of diverted attention): 

 

These factors are roughly based on the factor of 0.69 found 

by Knoop (not differentating between the different types of 

incidents). 

- In the absence of any information on this, it is assumed that 

the effect on the free flow capacity is equally distributed 

over the critical speed and the critical density. Therefore, a 

division parameter zincident = 0.5 is used. 
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5.4.13 Road works 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a STOCHASTIC way of occurrence, 

- and LOCAL effects 

- on the traffic SUPPLY characteristics. 

 

Stochastically generated variables: 

- OCCURRENCE OF (SHORT-TERM) ROAD WORKS per link of the 

motorway network 

- START TIME OF ROAD WORKS 

- DURATION OF ROAD WORKS 

- NUMBER OF CLOSED LANES 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   
 
 

None 

 

 

General characteristics of the simulated road works: 

- In the model only SHORT-TERM road works are simulated. Here 

‘short-term’ is understood as lasting less than 24 hours. The 

exclusion of longer lasting road works can be explained as 

follows: 

- The longer the duration of road works, the larger their 

demand effects can be expected to be. 

- These demand effects cannot (easily) be included in the 

model, since they are likely to be rather context-specific 

(while the model would need to deal with them in an 

automated way). 

- Instead of making some crude, not well-founded 

assumptions on these demand effects (with an unclear 

impact on the realism of the overall model outcomes), it 

was considered a better approach to make the clear 

choice to exclude the longer lasting road works. For the 

remaining (i.e. short-term) road works it is assumed 

acceptable to leave any possible demand effects out of 

account. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.17: Modeled dependencies 
between road works and other 
sources of variability 

Day of the week 

 

Road works 

Time of the day 

Month of the year 
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- It is assumed that these short-term road works can be modeled 

as occurring randomly over the network. Obviously, for longer 

lasting road works (including large scale reconstructions) this 

would be an unrealistic assumption. For the short-term road 

works (including repair works and regular maintenance 

activities) it is considered acceptable, however.  

- It seems reasonable to assume that work zones with a short 

duration generally are short in physical length as well. Because 

of this, it is considered acceptable to assume independency 

between the different links of the network. If road works are 

simulated to occur on a given link, these road works are 

supposed to extend from the start to the end of that link. 

- The model uses an equal road works probability for all links of 

the network. This corresponds to the assumption that the 

frequency of road works is independent of both the link length 

and the number of lanes on the link, which is clearly a 

simplification of reality. The only exception to this is that one-

lane roadways are assumed to have a 50% lower road works 

frequency. 

 

Probability input data: 

- The probabilities of occurrence of road works are derived from 

the ‘Meldwerk’ report mentioned in chapter 2. This report 

provides some statistical data of road works on the main road 

network of the Netherlands, collected over a one year period. 

- Using that: 

- in 2002, a total number of 25143 road works was 

registered (on motorways); 

- 95% of the road works on the main road network was 

reported to last for less than 24 hours;  

- in 2002, the total length of the motorway network 

amounted to 2300 kilometers; 

- in the model, the average motorway link length amounts 

to 1.2 kilometers, 

and assuming that on weekend days 50% more road works are 

carried out than on weekdays, the following probabilities of 

occurrence of road works have been obtained83: 

- weekdays: 2.9% 

- weekend days: 4.4% 

These probabilities are adjusted with the following correction 

factors for the month of year, in order to account for the month-

dependency in the execution of road works: 

                                                   
83 representing the probability that at some time on the simulated day road works are started 

on the considered link 
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- For the random generation of the start time of the road works, 

the following empirical cumulative probability distribution is 

used84: 
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This distribution is valid for road works on weekdays. In the 

absence of the required empirical data, for weekend days a 

uniform distribution is assumed. 

- For the random generation of the duration of the road works, an 

empirical probability distribution is used which is conditional on 

the start time of the road works. This way, it is fully reflected in 

the model that fewer road works are being carried out during 

the peak periods. The conditionality on the start time is 

illustrated in the figures below, which show the probability 

distribution of the duration for three different times of the day.  

                                                   
84 In this diagram, the changes in cumulative probability have been depicted at the upper 

bounds of the start time classes. 
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For the duration of road works on weekend days another 

probability distribution is used, which is not conditional on the 

start time. In the absence of the required empirical data, this 

distribution is taken equal to the average (i.e. unconditional) 

distribution of weekdays. 

- Based on the ‘Meldwerk’ data and some further assumptions, 

the following cumulative probability distributions have been 

assumed for the ‘severity’ of the road works (i.e. the number of 

lanes that are closed): 
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The interdependency between severity on the one hand and 

start time and duration on the other, are not taken into 

account. This is obviously an important limitation of the model. 

 

Procedure for simulating the occurrence of road works: 

- For every link it is randomly determined whether or not road 

works are started on the simulated day, using the probabilities of 

occurrence mentioned above. 

- Next, for each of the simulated road works a start time class is 

drawn from the start time distribution given above. The exact start 

time is determined by linearly interpolating with a random number. 

- After that, for all of the simulated road works a duration class is 

drawn from the (conditional) duration probability distribution. 

Again the exact value is determined by performing a uniform 

draw between the class boundaries. 

- Finally, for each of the road works it is randomly determined how 

many lanes are closed, using the probability distributions given above. 

- It is important to be aware of the fact that there might also be 

road works on the simulated day that have started already on 

the day before. Therefore, the above procedure is repeated for 

a hypothetical previous day. It is checked then whether there 

are any road works that extend into the current day. If so, this 

is accounted for by the model. 

 

Modeling of the effects: 

For each of the simulated road works, the following supply 

effects are implemented: 

- The speed limit (and thus the free speed) is assumed to be 

reduced to 70 km/h. 

- The number of available lanes is reduced by the stochastically 

generated number of lanes that are closed for the road works. 

- Based on values from the ‘Handboek Capaciteitswaarden 

Infrastructuur Autosnelwegen’ (AVV, 2002) and some 

further assumptions, the free flow capacities of the 

remaining lanes are adjusted to the following values: 

 

In the absence of information regarding any possible 

differences in the effects on the free flow capacity on the 

one hand, and the queue discharge rate (from standstill) on 
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the other, the calculation of adjusted values for the latter is 

based on the assumption that the relative capacity drop is 

unaffected. Obviously, this corresponds to the assumption 

that the relative effect on the queue discharge rate is equal 

to the relative effect on the free flow capacity. 

- Because of the fact that the free speed is reduced to 70 

km/h, the critical speed has to be reduced to 70 km/h as 

well. This already accounts for part of the effect on the free 

flow capacity (which equals the product of critical speed 

and critical density). It is assumed that the remaining part of 

this effect can be fully assigned to the critical density 

(meaning that the critical speed is not lowered any further). 

5.4.14 Traffic control actions (rush-hour lanes) 

 

Classification: 

- Modeled as a DISCRETE influence factor, 

- with a TRAFFIC RESPONSIVE DYNAMIC way of occurrence, 

- and LOCAL effects 

- on the traffic SUPPLY characteristics. 

 

Modeled interdependencies: 

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

   
 
 
 

None85 

 

 

General characteristics of the simulated traffic control actions: 

By default, no traffic control actions are simulated in the model. 

However, in order to be able to demonstrate that additional/revised 

insights may be obtained when evaluating a proposed traffic 

measure according to an approach in which the various sources of 

variability are explicitly accounted for, a possibility was included to 

simulate one specific example of dynamic traffic management 

measures, namely rush-hour lanes. These rush-hour lanes can be 

introduced on any link of the motorway network. They are 

supposed to involve a dynamic use of the hard shoulder of the road. 

                                                   
85  Note that a potentially important dependency is omitted here. Due to the temporary 

absence of a hard shoulder (during the period in which it is opened to traffic), incidents will 

more often cause lane blockages. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.18: Modeled dependencies 
between traffic control actions (the 
opening and closure of rush-hour 
lanes) and other sources of variability 

Weather conditions 

Traffic control actions 

Local amounts of traffic 

Incidents 

All sources of variability 



 
 
 

 

 

 
 195 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

Procedure for simulating the dynamic behavior of rush-hour lanes: 

- After every simulated 5-minute interval it is checked for every 

individual rush-hour lane section whether it should be opened (if 

it is currently closed) or closed (if it is currently opened). For the 

opening of a section, a threshold of a (5-minute averaged) flow 

on this section of 1500 veh/h · nlanes is used, where nlane is the 

(nominal) number of lanes. For the closure of a section a lower 

threshold is used, in order to avoid (high frequency) alternating 

behavior: 1200 veh/h · nlanes. This latter threshold is however not 

sufficient, since a low flow might be caused by congestion as 

well. Therefore, another requirement was added, which states 

that the (5-minute averaged) speed should be above 55 km/h. 

- If a rush-hour lane is going to be opened, it is checked whether 

the concerning link is incident free. If not, the opening of the 

rush-hour lane is cancelled. In such cases the hard shoulder will 

usually be blocked by the incident or used by emergency 

services, meaning that it cannot be opened to traffic. 

- Under certain weather conditions, the rush-hour lane cannot be 

opened either: 

- In case of limited visibility (due to fog or snow), the 

road traffic controllers cannot observe whether the hard 

shoulder is obstacle free (using the cameras installed for 

this purpose). 

- In case of snow or black ice, the hard shoulder might be 

too slippery to be opened to traffic. 

This is modeled by the specification of some weather-related 

criteria. 

 

Modeling of the effects: 

The effects of the opening of a rush-hour lane are modeled in 

the following way: 

- The speed limit (and thus the free speed) is assumed to be 

reduced to 80 km/h (for safety reasons, related to the 

smaller width of the rush-hour lane). 

- The number of available lanes is increased by one. 

- The capacities per lane, the critical density per lane, and 

the jam density per lane are not adapted. Note that this is a 

simplification of reality. For the analyses presented in this 

report, this simplification was acceptable, however. 

- The critical speed is not adjusted, unless the reduction of 

the free speed necessitates this 86 . Note that in this latter 

case the critical density is to be adjusted as well, in order to 

keep the product of critical speed and critical density equal 

to the free flow capacity, which by definition must be the 

case.  

                                                   
86 A critical speed which is larger than the (reduced) free speed is unrealistic, and therefore not 

accepted. 
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5.4.15 Intrinsic random variability in human driving behavior 

 

Classification: 

- Modeled as a CONTINUOUS influence factor, 

- with a STOCHASTIC way of occurrence, 

- and LOCAL effects 

- on the traffic SUPPLY characteristics. 

 

Modeled interdependencies:  

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

 
None 

 

  
None 

 

 

General characteristics of the simulated intrinsic random variability: 

- The intrinsic random variations in the free speeds are neglected. 

In view of the fact that these local variations will largely 

counterbalance each other at the level of routes, they are 

considered less important. 

- The intrinsic random variations in the jam densities are 

neglected as well. In practice, these variations are found to be 

relatively limited. Furthermore, it should be noted that as far as 

their effect on queue lengths is considered, the local variations 

can be expected to partially counterbalance each other. 

- The intrinsic random variations in the free flow capacities are 

modeled by assuming them to be Weibull distributed, in line 

with the research results discussed in section 2.2.5. Roughly 

based on the findings of Brilon et al (2005) and Geistefeldt 

(2009), the coefficient of variation of these distributions is 

assumed equal to 7%. The mean of the distributions is taken 

equal to the capacity value as obtained by correcting the 

nominal/representative capacity value for all other sources of 

variability. 

- No information was found on the characteristics of the intrinsic 

random variation in the queue discharge rates from standstill. It 

is assumed that this variation can be modeled with a Weibull 

distribution as well, though with a lower variability. A 

coefficient of variation of 55% of that of the free flow 

capacities is assumed. 

- The value of 7% given above applies to roadways with three 

lanes. Likely, for roadways with other numbers of lanes 

different coefficients of variation are found. This is accounted 

for by using the following equation to calculate the coefficients 

of variation for roadways with other numbers of lanes: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 5.19: Modeled dependencies 
between the intrinsic randomness in 
human driving behavior and other 
sources of variability 

Intrinsic variability 
driving behavior 
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In this formula, CoV(nlanes) is the coefficient of variation for 

roadways with nlanes lanes. Accordingly, CoV(nlanes) is the 

coefficient of variation for roadways with 3 lanes (0.07). 

Note that this formula is based on the assumption that the 

stochastic roadway capacity is equal to the summation of nlanes 

independent identically distributed lane capacities. Although 

not entirely correct, independency between the different lane 

capacities seems a reasonable assumption 87  (at least more 

reasonable than the assumption of full dependency). The direct 

consequence of this assumption is that the relative variability of 

the roadway capacity is larger for roadways with a lower 

number of lanes, which seems reasonable. Empirical research 

will be required, however, to find out whether this is indeed the 

case. 

- When the number of lanes is simulated to change (due to some 

other source of variability), the coefficients of variation of the 

capacity distributions are adjusted accordingly, using the 

formula given above. 

- It is important to be aware of the fact that if the average of the 

capacity distribution changes (due to one of the other sources 

of variability, affecting the capacity per lane), this will cause the 

absolute width of this distribution (reflecting the variation in 

the capacity values) to change as well, if the coefficient of 

variation is kept constant. (After all, the standard deviation of a 

distribution is by definition equal to the product of the mean 

and the coefficient of variation). Since this might not be 

realistic, the model corrects for this by multiplying the 

coefficient of variation with the ratio of the representative 

capacity value and the newly computed average capacity value. 

- The developed model also provides the option to include any 

possible influences that other sources of variability may have on 

the degree of intrinsic randomness of the capacities. In the 

quantitative analyses presented in this report this option has 

not been used, however, because of a lack of information 

regarding such potential influences. 

 

Procedure for simulating the effect of the intrinsic random variability 

For every cell in the network, independent random realizations 

of the Weibull distributed capacities are generated for every 5-

minute interval. For this, the scale and shape parameters of the 

Weibull distributions are required. These parameters are 

uniquely related to the mean and coefficient of variation of the 

distribution. The parameters cannot be calculated from the 

                                                   
87  Note here that the fact that vehicles can switch from one lane to another is already 

accounted for by confronting the total traffic demand with the total roadway capacity (rather 

than confronting demand and capacity lane by lane). Also note that the common sources of 

variability (causing interdependencies between the capacities of the different lanes) are largely 

accounted for already by explicitly adapting their average values to the variations in these 

influence factors. 
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mean and coefficient of variation in analytical way, however. 

Therefore, a numerical approximation is required. 

Related to the fact that this numerical approximation is to be 

repeated a very large number of times (because of the fact that 

the mean and coefficient of variation are variable over time and 

space), this was computationally too demanding, however. 

Therefore, another approach was devised. This approach uses a 

large precompiled conversion table, which contains the shape 

parameters for a large number of coefficients of variation. This 

way, the required shape parameter can be found in virtually no 

time and yet with a high accuracy. 

Once the shape parameter is known, the scale parameter can 

straightforwardly be calculated from the combination of this 

shape parameter and the mean capacity value, using an 

analytical relationship. 

5.4.16 Intrinsic random variability in human travel behavior 

 

Classification: 

- Modeled as a CONTINUOUS influence factor, 

- with a STOCHASTIC way of occurrence, 

- and ORIGIN-DESTINATION SPECIFIC effects 

- on the traffic DEMANDS. 

 

Modeled interdependencies:  

Modeled dependencies 
on other sources of 

variability 

Considered 
source of variability 

Modeled influences on 
other sources of 

variability 

 
None 

 

  
None 

 

 

Procedure for simulating the effect of the intrinsic random variability 

It is assumed that all other sources of variability in the traffic 

demands together fully explain the part of the demand 

variation for which a relation/dependency exists between the 

individual travelers (i.e. the part of the variation in their travel 

behavior that is attributable to some common external 

influences). What remains then, is the independent part of the 

variation in the travel behavior of individual travelers. That is, 

the part of the variation that can only be explained by personal 

influence factors.   

In this case, the number of travelers on a given origin-

destination relation in a given 5-minute interval can be 

considered as the summation of n Bern(pi)-distributed variables, 

where n represents the (imaginary) total number of potential 

travelers, and pi represents the probability that potential 

traveler i decides to make the trip. This probability has a 

different value for each (potential) traveler i, and is conditional 

on the various common external influences mentioned above. 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 
Table 5.20: Modeled dependencies 
between the intrinsic randomness in 
human travel behavior and other 
sources of variability 

Intrinsic random 
variability demands 
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This summation of n Bern(pi)-distributed variables can be 

approximated by one single Binom(n,<pi>)-distributed variable, 

where <pi> represents the average probability over all potential 

travelers. Note that the variance of this variable is larger than 

the variance of the original summation. This does not really 

matter, however. In fact, one could even say that this will 

partially compensate for the fact that inevitably some of the 

‘common external influence variation’ will have been 

‘overlooked’ in the model.  

The main problem is now the choice of appropriate values for n 

and <pi>. This problem can be avoided by approximating the 

Binom(n,<pi>)-distributed variable by a Poiss(λ)-distributed 

variable, where λ =  n · <pi>. Now it is no longer necessary to 

choose values for n and <pi>. A value for their product is 

sufficient. This product corresponds to the expected value of 

the Poisson distribution. This expected value can be considered 

to be given by the demand value following from all other 

sources of variability (computed for the given origin-destination 

relation and 5-minute interval). This makes the Poisson 

distribution conditional on all external influence factors, as it 

obviously should be. 

Note that by approximating the Binom(n,<pi>)-distributed 

variable by a Poiss(λ)-distributed variable, it is implicitly 

assumed that n  ∞ and <pi>  0. Again, this results in an 

overestimation of the variance of the traffic demands. As 

argued before, this does not seem too problematic, however. 

The figure below shows an example of the effect of the 

addition of the intrinsic random demand variability on an 

origin-destination demand pattern over the day. 
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5.5 Issues requiring further consideration 

In the previous sections, the developed quantification model has been 

described. During the development of this model, some modeling issues 

have come to light which require further consideration. These issues are 

dealt with in the next chapter.  
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6. Remaining modeling issues 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.1 Introduction 

As noted in the final section of the previous chapter, in the 

development of the model some modeling issues have come to light 

which require further consideration. These issues will be discussed in 

this chapter. Since they generally require substantial further research, it 

was not possible to actually solve them within this master thesis 

research project. However, besides explaining the different problems, 

this chapter also tries to suggest some possible strategies to overcome 

these problems. This includes a possible solution strategy for reducing 

the required number of simulations. At this moment, at least a few 

thousand simulations are necessary to obtain results with a sufficient 

level of statistical accuracy. Given the simulation time of about 1.5 to 2 

minutes per simulation, one simulation series would take multiple days, 

if not multiple weeks. 

 

6.2 Spatial scale of the random capacity variations 

As explained before, the road capacities are randomly varied per cell of 

the network (modeling these as Weibull distributed variables), in order 

to account for the intrinsic randomness in human driving behavior 

(both between and ‘within’ drivers). This means that it is implicitly 

assumed that the spatial scale of these random capacity variations 

matches the cell size of the numerical solution scheme. Obviously this 

assumption is purely a pragmatic one, without any theoretical 

foundation. 

 

Obviously, the stochastic capacities of two very closely spaced cross-

sections of a road will be highly correlated with each other. This 

correlation arises from the fact that during a 5-minute interval, almost 

the same traffic – being an ‘arrangement’ of individual driver-vehicle 

entities – passes by at these two cross-sections. For an increasing 

spacing between the two cross-sections, this mutual correlation will 

decrease. This is due to the facts that, to an increasing extent: 

- the passing traffic will partly consist of other driver-vehicle 

entities at the two cross-sections 

- the driver-vehicle entities will be differently ‘arranged’ within 

the traffic flow (due to lane changes and speed differences) 

- variations in the behavior of an individual may take place 

between the two cross-sections (e.g. due to fluctuations in 

attention level) 

 

To the best knowledge of the author, the spatial dependency in the 

stochastic capacities has never been studied. The only thing found in 
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international literature is a remark by Brilon et al (2005), stating that is 

seems reasonable to assume independency of the capacity values if the 

lengths of the sections on which they are applied are chosen sufficiently 

large. 

 

In spite of the little attention in international research, it is not unlikely 

that this aspect could have a significant effect on the final outcomes of 

the developed model. After all, the larger the number of independent 

capacity realizations on a link of a given length (corresponding to a 

shorter section length for which one uniform capacity value is 

assumed), the lower the minimum of these realizations is expected to 

be. This minimum of the capacity values on the link is obviously 

decisive for the amount of traffic that can traverse the link without 

inducing congestion (Figure 6.1). As a result, a smaller capacity length 

scale will on average result in more traffic congestion occurring. 

 

 
 

This latter effect is indeed observed in the model results. In order to 

illustrate this, an example is given in Figure 6.2. In this figure, the 

traffic speed on a link is shown as a function of the time of the day 

(horizontal axis) and the location along this link (vertical axis). The 

upper part of the figure shows the speeds as computed when 

independent capacity realizations are drawn per cell of the numerical 

discretization scheme (the default modeling approach in the developed 

model). The lower part on the other hand shows the speeds that are 

obtained when only one capacity value is drawn for the link as a whole. 

This latter modeling approach corresponds to the (unrealistic) situation 

in which the capacities on the link would be fully interdependent. 

 

The figure shows that all traffic congestion that is calculated with the 

first modeling approach is absent in the results of the second modeling 

approach, except for the traffic congestion induced by two incidents 

that were simulated around 8 and 17 o’clock. In order to avoid giving a 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.1: Modeling of a link (top) 
as a series of cells (middle) with 
independent capacity realizations 
(assuming a uniform capacity within 
a cell), of which the minimum value 
is decisive for the occurrence of 
traffic congestion on the link 
(bottom) 
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wrong impression, it has to be noted here that the difference between 

the outputs of the two modeling approaches is not on all links as big as 

for the link for which this figure was obtained. 
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Time-space diagram of cell speeds link 375 - simulation 1
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Let us now take a closer look at the nature of the traffic congestion 

computed with the first modeling approach (ignoring the incident-

induced congestion). Part of this congestion can be recognized as spill-

back from a downstream bottleneck (the thick red band near 18:15 

hours), while the other part of the congestion consists of shock waves 

that are generated somewhere on the link itself. The probable 

explanation for the fact that the spill-back is not observed in the output 

of the second simulation is in the fact that in the first simulation the 

‘net’ bottleneck capacity was likely to be lower. After all, in this 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.2: Time-space diagrams of 
the speed at a link as computed with 
a cell-based capacity variation 
approach (upper part) and as 
computed with a link-based capacity 
variation approach (lower part) 
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simulation n independent capacity realizations were associated with the 

bottleneck-forming link (where n is the number of cells of this link), of 

which the minimum is decisive for the bottleneck capacity (as explained 

with Figure 6.1). In the second simulation only one capacity realization 

was taken for the link as a whole. 

 

The congestion waves having their origin on the link itself are created 

when the propagating traffic flow pattern meets a cell with a capacity 

realization which is too low for it. In the figure it can be observed that 

many of these congestion waves have already dissolved again before 

reaching the upstream end of the link. Also note that most of the 

congestion waves are reasonably short. As a consequence, their final 

effects on the travel times are probably limited. 

 

It should nevertheless be noted here that in real empirical data 

measured at the Dutch motorways we do not see that many congestion 

waves emerging at arbitrary places along a link as suggested by the 

model output depicted in the upper part of Figure 6.2. This does not 

have to say that the second modeling approach (i.e. using a link-based 

capacity variation procedure, corresponding to the assumption of a full 

dependency between the capacities at the different locations along a 

link) is more realistic, though. Such a full dependency seems rather 

unlikely. After all, the only variation that is considered here is the 

variation due to the intrinsic randomness in human driving behavior, 

which is expected to have a spatial correlation that clearly decreases 

with increasing distance, as explained above. All other sources of spatial 

dependencies in the capacity values, which might have much larger 

dependency length scales (such as the effects of bad weather, which 

often are network-wide) are not relevant here, since these have been 

explicitly accounted for already in the parameters of the capacity 

distributions. 

 

Instead of abandoning the concept of a cell-based capacity variation, 

maybe exactly the opposite strategy should be followed in order to 

improve the validity of the modeling approach. That is, maybe the cell 

size of the capacity randomization should be taken smaller than the cell 

size currently used in the model. After all, if a very small cell size would 

be chosen, the higher traffic demands would likely be ‘filtered out’ 

already within short distances after bottleneck locations (typically found 

at the network nodes, i.e. at the points where different links are 

connected to each other). As a result, less traffic congestion would 

originate at arbitrary locations along the link, resulting in a better 

resemblance of the model output to the empirical patterns found in 

reality. However, the overall level of traffic congestion would be higher 

in this case, since a very small cell size would correspond to very large 

numbers of independent capacity realizations, of which the minimums 

would be decisive for the quality of the traffic flow. Considering that 

the current model already produces too much congestion in many of 

the simulation runs (see section 7.5.1), on this aspect the resemblance 

to reality would deteriorate. 

 



 
 
 

 

 

 
 205 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

Apart from the possible role of the capacity cell size, some other 

possible causes for the discrepancy between the model output and real-

life data (i.e. the fact that we do not really observe that many 

congestion waves originating at arbitrary locations along a link as 

predicted by the model) have been identified as well: 

- In reality, the (free flow) capacity of a bottleneck itself (i.e. the 

part of the road in the direct vicinity of the discontinuity in 

geometry) may be significantly lower than the capacity of the 

rest of the bottleneck-forming link, due to the specific traffic 

maneuvers that take place near the bottleneck. This difference 

can explain why high traffic demands usually break down 

already at the bottleneck location itself (i.e. directly at the 

beginning of a link in the model), and thus less often 

somewhere at ‘arbitrary’ locations along the link. From practice 

it is known that this is the case for weaving sections. For on-

ramp bottlenecks, however, exactly the opposite is true: over a 

short length near the on-ramp significantly higher capacities are 

achieved than elsewhere on the link. 

- In reality the traffic demand on links downstream of active 

bottlenecks may be significantly reduced by the capacity drop, 

resulting in the traffic demands remaining well below the 

capacities along these links. In the model, the capacity drop at 

fixed bottlenecks (represented by network nodes) is not 

correctly modeled (which is discussed in section 6.4), resulting 

in unrealistically high traffic demands downstream of such 

bottlenecks, which might generate congestion waves. 

- From real-life data measured on Dutch motorways it appears 

that most traffic breakdowns at road sections without a distinct 

bottleneck can still be explained by some other, less 

pronounced spatial discontinuity, such as a gradual curve in the 

road axis, or a certain traffic monitoring device above the road, 

which locally reduces the capacity of the motorway. As a result, 

most of the real-life traffic breakdowns occurring ‘somewhere’ 

along a link are concentrated at a limited number of locations 

with such a distinguishing feature. This is not taken into 

account in the model. 

 

From the discussion above it might be clear that there is no clear 

solution for the problem at hand. More research into the spatial (or 

rather: spatiotemporal) dependencies in capacities seems indispensable, 

in combination with research into the (possible) phenomena listed 

above. In any case, capacity distributions for road sections without 

distinct bottleneck – as derived by Brilon et al. (2005) – have little value 

without a corresponding length scale for which they have been derived. 

 

After an investigation of the spatial (or spatiotemporal) dependencies, 

the newly obtained knowledge can be incorporated in the model by 

using it for making a well-founded choice for the lengths over which 

(mutually independent) uniform capacity values are applied, or by using 

it to add a certain correlation between the capacities of adjoining cells. 

Ideally, one would stop using capacity variables that are related to fixed 
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cells of the network, and rather use capacity variables that are 

propagated along with the traffic flow, while varying in an autocorrelated 

way. It would be very difficult, however, to derive appropriate 

distribution functions and autocorrelation coefficients for this.  

 

6.3 Mismatch between the demands and the capacity realizations 

As described in section 5.3.1, traffic demand and capacity values are 

both generated on a 5-minute basis. As far as the demand values are 

concerned, this means that at the network boundaries traffic demands 

are constant within these 5-minute intervals. Within the network this 

however is not the case. This is due to the fact that the computational 

core of the model (i.e. the dynamic traffic simulation model) uses a 

much shorter time step (of 5 seconds), which is required for a 

sufficiently accurate traffic flow modeling. As a result, the traffic 

demands within the network show an unintended variation with a 

much shorter time interval, as illustrated by Figure 6.3. The vertical grid 

lines in this figure indicate the boundaries of the 5-minute intervals. 

 

The consequence of the above is that in the traffic simulation 5-minute 

free flow capacity values are confronted with more frequently varying 

traffic demand values. This is obviously not correct, since these 5-

minute capacity values are valid for 5-minute demand values only. For 

shorter time intervals different capacity distribution functions would 

apply. After all, the shorter the time interval that is considered, the less 

likely it is that a given traffic demand level induces a traffic breakdown 

during this interval. 
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As a result of this mismatch between demand and capacity, capacity will 

be exceeded too frequently in the model. The final impact on the traffic 

conditions is unclear however. In any case, it is obvious that the net 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.3: Graph of the traffic 
demand in an arbitrary cell of the 
network (for two arbitrary hours of 
the day), illustrating that this traffic 
demand is not constant within the 5-
minute intervals (of which the 
boundaries are indicated by the 
vertical grid lines) 
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effect will be negative. After all, the additional congestion that is created 

when the traffic demand temporarily exceeds the 5-minute capacity 

value, while its 5-minute aggregated value would not have exceeded it, 

will not be compensated for at other moments in time. This is due to the 

fact that ‘negative congestion’ (i.e. a positively valued counterpart of 

congestion) does not exist, which makes traffic a non-linear system. It is 

estimated however that the amount of additional congestion remains 

limited, because of the fact that the extra capacity exceedances have 

limited durations and probably are usually also limited in size. 

 

Note that there is no obvious solution for this problem. Basically, there 

are two types of solutions that could be suggested, which both turn out 

to be inappropriate when examined more closely: 

- varying the capacity on a 5-second instead of 5-minute basis 

(using 5-second capacity distributions); 

- using a cumulative approach for the confrontation of traffic 

demand with capacity. 

 

The first approach is problematic because of the facts that: 

- consecutive 5-second capacity realizations will probably not be 

independent of one another anymore, due to microscopic 

traffic flow phenomena with times scales in this order of 

magnitude; 

- confronting the traffic demand values with 5-second capacity 

values actually would be erroneous too, since these traffic 

demand values are only to a limited extent variable per 5-

second interval. Only if the demand randomization at the 

network boundaries would be based on 5-second intervals too, 

this would be a valid approach 88. In such small time intervals 

traffic demands however are strongly determined by 

microscopic traffic processes, like platooning. 

 

The second approach is inappropriate because it would imply that 

initially too much traffic could be let through, which should be 

compensated for by using a capacity value of zero from the moment 

the aggregated demand has reached the capacity. Clearly, this may 

yield unrealistic traffic conditions. In order to avoid this, one actually 

should redistribute the aggregated traffic demand over the 5-minute 

interval. This however would demand from the model that it could 

predict the future or, alternatively, go back in time. 

 

6.4 Incomplete modeling of the capacity drop 

In section 5.2.3 it was described how the capacity drop is taken into 

account in the model. While this way of modeling indeed results in the 

capacity drop being taken into account for situations in which the 

number of lanes directly downstream of the head of the queue is equal 

to (or larger than) the number of lanes directly upstream of the head of 

                                                   
88 Although it could very well be that these 5-second demand variations would be smoothed 

out too much by numerical diffusion in the traffic flow simulation.  
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the queue (a situation which typically occurs when a queue dissolves 

from its head, meaning that this head of the queue travels upstream), it 

does not result in the capacity drop being taken into account for 

situations in which the number of lanes directly downstream of the 

head of the queue is smaller than the number of lanes directly upstream 

of the head of the queue. 

 

After all, in this latter case the inflow capacity of the downstream cell 

might well be lower than the outflow capacity of the (upstream) 

congested cell, even if in the computation of the latter a capacity drop 

is accounted for (see Figure 6.4). This makes the inflow capacity of the 

downstream cell decisive for the outflow of the queue, and not the 

outflow capacity of the congested cell. This means that in such 

situations the capacity drop should have been accounted for in the 

inflow capacity of the downstream cell, while currently the capacity 

drop is only applied on the outflow capacity of congested cells 

themselves. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.4: Example  of a situation in 
which the capacity drop remains 
without effect, due to an 
incompleteness in the modeling 
approach. For the situation shown in 
this figure this will have to be solved 
by modification of the node model. 
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Since this situation is the typical situation found at bottlenecks, where 

most of the traffic congestion emerges, this incomplete modeling of the 

capacity drop might well result in capacity drop having less effect in the 

model than in reality. This actually seems to be confirmed by some 

model test runs in which the simulated traffic conditions with and 

without the capacity drop were compared. In these tests the influence 

of the capacity drop seemed to be relatively modest. 

 

Solving this problem is not so easy, since bottlenecks typically coincide 

with network nodes. This means that the downstream cell on which the 

capacity drop is to be applied on its inflow capacity is typically located 

on another link than the first congested cell of the queue. As a result, 

the problem cannot be solved by a simple adaptation in the flux model 

applied at the cell boundaries within a link. Instead, the flux model for 

the network nodes will have to be adapted, which will be more 

complicated. 

 

6.5 Replication of the random number sequence 

As explained in section 5.3.1, special care has been taken to make sure 

that the same pseudo-random numbers would be used in different 

model runs, in order to improve the comparability of the outputs of 

these runs. This means that all different parts of the model have been 

programmed in such a way that they always generate the same number 

of pseudo-random numbers, irrespective of certain model settings. In a 

certain test run it was discovered however that some subcomponent of 

the demand randomizer does not always obeys to this principle, 

messing up the random number sequence. 

 

Closer examination revealed that the problem is in the Poisson 

generator of MATLAB (which is used at the end of the demand 

randomization procedure, for obtaining the final realizations of the 

demand values, given their expected values). The algorithm underneath 

this generator turned out to use a randomly varying number of 

(uniform) pseudorandom numbers per evaluation. 

 

Since there was no straightforward solution for this (except for a 

computationally too demanding one), the problem has not really been   

solved. Instead, its final impact on the random number stream has been 

suppressed. This was done by programming the model to manipulate 

the random number generator in such a way after the completion of 

the Poisson procedure, that it arrives in a state which is a certain 

predefined amount beyond89 the state that it had at the start of this 

procedure. 

 

This approach ensures that the effects of the problem remain limited to 

the Poisson variations themselves only. Considering that the relative 

importance of these Poisson variations is found to be minor (see section 

8.6), these remaining effects are unlikely to have significant consequences. 

                                                   
89 in terms of the number of random values that is has generated 
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6.6 Required number of simulations 

This section deals with the problem of the extremely large computation 

time that is associated with performing analyses with the model. Below, 

this problem first is explained in more detail. After that, different 

solution approaches are discussed. Finally one of these strategies is 

developed in more detail.  

6.6.1 Problem explanation 

The required number of simulation runs is dependent on: 

- the accuracy with which the performance indicators are to be 

computed, 

- the desired confidence level (i.e. the level of confidence with 

which the desired accuracy is to be achieved),  

- the variation in the output of the traffic system, and 

- the performance indicators to be evaluated. 

 

Note that the required number of simulation runs is not directly 

dependent on the number of degrees of freedom included in the 

model, or their variation. A larger number of degrees of freedom or a 

larger variation in these does only result in an increase of the required 

number of simulation runs to the extent that this contributes to a larger 

variation in the output of the traffic system. 

 

Of the various statistics that are to be calculated from the simulation 

results (see chapter 3), probably the 90th percentile travel time (which is 

not only one of the indicators itself, but is also used in the computation 

of two other indicators 90 ) is decisive for the required number of 

simulations91. This is due to the fact that this statistic is ‘located’ in the 

long (i.e. low-density) tail of the travel time distribution, which results 

in the required number of simulations for a given accuracy and 

confidence level to be relatively high. 

 

It is well known that the variance of a quantile estimator (or 

equivalently, percentile estimator) based on order statistics is given by 

the following equation (Chen and Kelton, 2001): 

 

 
 

In this equation, 

-  is the estimator for , which is the quantile (or, 

equivalently, the  percentile) of a probability distribution, 

-  is the number of simulations (i.e. independent realizations 

from one and the same probability distribution , 

                                                   
90 the width and the skewness of the travel time distribution 

91 It should be noted that it actually is not impossible that not the 90 th percentile travel time, 

but rather the travel time instability ‘indicator’ is decisive for the required number of 

simulations. However, since this ‘indicator’ is a whole probability distribution (instead of a 

single-valued quantity; see section 3.4), it is difficult to make an estimate of the number of 

simulations that it requires. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 6.1 
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-  is the probability density function of the random variable  

(in this case the travel time), and 

-  is the  order statistic of the , being 

the  independent realizations of . 

 

In order to get an indication of the required number of simulation runs 

( ), this equation was applied on a hypothetical travel time distribution. 
Imagine that we would require that  (corresponding to a 

maximal standard deviation of the estimator of 1 minute 92), and that 

 = 0.005 min-1 (which follows from the hypothetical travel time 

distribution). Then it follows directly from Equation 6.1 (neglecting the 

second order term) that for the calculation of the 90 th percentile travel 

time ( ) about 3600 simulation runs are required. 

 

It should be noted that of course not only the variance of the estimator 

should be sufficiently small, but its bias as well. This poses another 

requirement on the number of simulations. However, given the fact 

that the bias is likely to be relatively small compared to the variance93, it 

is estimated that the requirement on the variance will be decisive.  

 

As expected, for the calculation of the 10th and 50th percentile travel 

times (which in chapter 3 were identified as (elements in) important 

performance indicators as well) a much lower number of simulation 
runs would be required (for the same requirement ). For the 

50th percentile is found (assuming  = 0.020 min-1), and 

for the 10th percentile  (assuming  = 0.033 min-1). 

 

Since one simulation run takes about 1.5 to 2 minutes, the in the above 

estimated required number of 3600 simulation runs would correspond 

to a total simulation time of multiple days. In chapter 3 it was argued, 

however, that in an ideal evaluation the 90 th percentile travel times 

should be evaluated separately for different subsets of the simulation 

runs. For example, the travel times simulated for Fridays should be 

considered separately from those simulated for other weekdays, since 

regular road users will be aware of the systematic differences between 

these different days of the week, which means that these differences 

do not contribute to their travel time uncertainty. If the 90 th percentiles 

indeed are evaluated separately for different subsets of the simulation 

runs, even more simulation runs would be needed, resulting in a total 

simulation time of multiple weeks. Since it ultimately is aimed for to 

compare the traffic system’s performance for different scenarios (for 

example with and without certain traffic measures), this multiple weeks 

lasting procedure would have to be run multiple times (at least twice), 

resulting in the total amount of time required for a complete analysis 

being even several times as large.    

 

In view of this extremely large computation time, it is desirable to look 

for ways to reduce the required number of simulations. 

                                                   
92 This actually can be seen as a combined accuracy and confidence level requirement. 

93 For large n, .
 



 
 
 

 

 

 
 212 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

6.6.2 Solution strategies 

Obviously, one possibility would be to remove the 90 th percentile travel 

time from the set of indicators to be evaluated. In view of the 

important role of this statistic (both as separate indicator and as 

element of other indicators), this is clearly no option, however.  

 

Another solution that might be suggested could be to abandon the 

Monte Carlo based approach, and to resort to a scenario-based 

simulation approach (meaning that only a number of predefined 

demand/supply scenarios would be simulated). After all, at first sight it 

might seem somewhat inefficient to ‘simply’ generate random 

realizations from the full spectrum of possible outcomes (i.e. possible 

traffic conditions). However, it can easily be seen that a scenario-based 

approached is definitely not appropriate for the task at hand, since:  

- Using a scenario-based approach would require to make 

assumptions on the relative importance of the various 

influencing factors, while it is precisely one of the objectives of 

this project to find out whether explicitly considering the 

inherent variability in the traffic system can provide us with 

additional insights into these relative contributions. 

- It would be very difficult (if not impossible) to derive statistical 

indicators (characterizing probability distributions) from the 

results of a set of predefined scenarios. 

 

In view of the above, we are more or less stuck to using the approach 

using Monte Carlo simulation. However, a possible strategy to reduce 

the required number of simulation runs could of course be to look for 

more advanced variants of the Monte Carlo technique, which are more 

efficient. 

 

These more advanced ways of sampling can be found in the techniques 

that are known as ‘Latin Hypercube Sampling’ and ‘Importance 

Sampling’. With Latin Hypercube Sampling, the total probability space 

of the random variables in question is divided in a number of equally 

sized intervals (equally sized in terms of probability). This number of 

intervals should be equal to the total number of simulations to be 

performed. In the sampling procedure a random realization of a 

variable now is taken in two stages. First, randomly one of the intervals 

is selected. After that, a random realization is taken from this specific 

interval. The key of Latin Hypercube Sampling is now that the interval 

is selected from the subset of intervals that have not been selected in 

one of the simulations before. Consequently, after finishing the last 

simulation, all intervals have been selected once. This way, the 

randomly generated variable values are very likely more evenly spread 

over the total probability space as compared with those generated with 

the basic Monte Carlo technique. As a result, the generated outcomes 

can be assumed to better represent the total space of all possible 

outcomes. This then results in the number of simulations required to 

achieve a certain statistical accuracy being lower. 
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It might be clear however that Latin Hypercube Sampling is yet not the 

most efficient sampling technique that one conceptually could think of. 

After all, the estimation of the 90 th percentile travel time will still 

require far more simulations than the estimation of for example the 

median of the travel time, because of its location in the tail of the 

distribution. It would therefore be more efficient if the sampling 

procedure would give extra emphasis to this tail of the travel time 

distribution. This basically is the idea of the Importance Sampling 

technique. This technique is explained in more detail below. Here it is 

also put forward how this technique could be used in the model at 

hand. Note that an integration of this technique with the Latin 

Hypercube Sampling technique described above of course would be 

even more efficient.  

6.6.3 Elaboration of the importance sampling technique 

Assuming that the 90th percentile travel time statistic by far requires the 

largest number of simulation runs (see the discussion in section 6.6.1), 

and is therefore decisive for the number of runs to be performed, this 

required number of simulation runs can be reduced by making 

‘unfavorable’ simulation outcomes (involving travel times which are 

found in the right tail of the travel time distributions) more likely, by 

manipulating the inputs of the dynamic traffic simulation model (i.e. 

the traffic demand and supply characteristics generated by the 

randomization components). This is illustrated in Figure 6.5. Note that 

this manipulation should not be exaggerated, since other indicators 

(like the median of the travel time distribution) might become decisive 

for the required number of simulations then, meaning that the problem 

would be moved. 

 

 
 

From Equation 6.1 it appears that this technique in principal should 

allow for a drastic reduction of the required number of simulation runs, 

since this required number is proportional to the square of the 

probability density corresponding to the 90 th percentile travel time 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.5: Importance sampling: 
increasing the likelihood of certain 
outcomes of the simulation runs by 
manipulating the input of the 
dynamic traffic simulation model (i.e. 
the randomly generated traffic 
demand and supply characteristics) 
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. It is estimated that in this context the maximum achievable 

effect will be a reduction from a few thousand to only one thousand 

simulation runs. 

 

Of course, after the simulation process a correction should be applied 

on the outcomes, in order to correct for the manipulation of the input. 

Currently, in the calculations that are performed by the data processing 

component of the model all outcomes of the different simulations 

runs  are of course weighted equally. If importance 

sampling is applied, however, each individual simulation outcome  

should be weighted by the ratio of its original probability density  

and its importance sampling (or manipulated) probability 
density , in order to correct for its too high or too low likelihood 

of occurrence in the simulation process: 

 

 
 

In this equation,  is de weight (or correction factor) of simulation 

outcome . The simulation outcome for example could be a travel time 

or the number of lost vehicle hours.  

 
The problem of Equation 6.2 however is that  and  are both 

unknown. This is commonly solved by calculating the weight factor 

from the (original and manipulated) joint probability density values of 

the input: 

 

 
 

Here  is the original joint probability density of the input 

values , which are the realizations of the input variables 

 for simulation run , describing the traffic demand and 

supply characteristics. 

Similarly,  is the importance sampling (or manipulated) 

joint probability density of the input values . 

 

In this case, this new equation does not really solve the problem, 
however, because of the difficulties in calculating  and 

, which arise from the interdependencies between 

various of the input variables (i.e. demand and supply variables) . 

Therefore, another approach is suggested. In this approach, not directly 

the probability distribution functions of the input variables themselves 

are manipulated, but rather the – originally uniform – probability 

distributions of the random numbers that are generated for the 

calculation of these input variables. The main advantage of this 

approach is that all these random numbers are mutually independent, 

which significantly simplifies the calculation of the weight factors: 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 6.2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 6.3 



 
 
 

 

 

 
 215 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

 
 

In this equation: 
-  is de weight (or correction factor) of simulation outcome . 

-  is the realization of the random number variable 

 for simulation run . 
-  is the original joint probability density of the 

random number realizations . 

-  is the importance sampling (or manipulated) 

joint probability density of the random number realizations 
. 

-  is the original probability density of the 

random number realizations . Since  is uniformly distributed 

between zero and one, obviously . 

-  is the importance sampling (or manipulated) 

probability density of the random number realizations . This 

probability density obviously is not necessarily equal to one. 

 

Since only part of the random numbers will be manipulated (say only 

the  for  , resulting in  for 

), Equation 6.4 further simplifies to: 

 

 
 

To illustrate the manipulation process, a simple example is considered.  

 

Imagine that we would simulate the occurrence of rainy weather in the 

following (simplified) way (using standard Monte Carlo simulation, i.e. 

without applying importance sampling): 

1) Draw a random number r (i.e. a realization of R, which is 

uniformly distributed between one and zero). 

2) If r  0.07 (the probability of occurrence of rainy weather), 

rainy weather will be simulated (by adapting the relevant traffic 

demand and supply characteristics). 

3) If r > 0.07 no rainy weather will be simulated. 

This is shown in Figure 6.6. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 6.4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Equation 6.5 
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Now we can artificially increase the probability of occurrence of rainy 

weather in the simulation process by manipulating the probability 

distribution of R, which is illustrated in Figure 6.7. 

 

 
 

Imagine that we would draw the random number r = 0.04 from this 

manipulated probability distribution for a certain simulation run  

(meaning that the occurrence of rainy weather will be assumed for this 

specific simulation run). If none of the other random number variables 

were manipulated, the outcome of this simulation run is then to be 

weighted (relative to the outcomes of other simulation runs) with a 
correction factor  given by: 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.6: Simulation of the 
occurrence of rainy weather using a 
random number between zero and 
one, as applied within the context of 
a standard Monte Carlo simulation 
approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 6.7: Simulation of the 
occurrence of rainy weather using a 
manipulated random number 
between zero and one, as applied 
within the context of the importance 
sampling approach 
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Similarly, if a random number r > 0.07 would have been drawn 

(corresponding to the situation ‘no rain’), the outcome of the 

concerning simulation run would have to be weighted with a correction 
factor  given by: 

 
 

Of course, the main question is now: which of the various random 

number variables (each of which belongs to a certain source of 

variability in traffic demand and/or supply) should be manipulated, and 

how, in order for the indirect manipulation of the travel time 

distributions to be most effective (i.e. achieving the most significant 

reduction in the required number of simulation runs)? Unfortunately, 

this question cannot be answered. Therefore, this would have to be 

found out by a process of trial and error. Obviously, the absolute 

optimum will certainly not be found then. This however is not required 

for the method to have a significant effect. 
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7. Model validity 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . 

7.1 Introduction 

A model is a simplified representation of a part of reality. In order to be 

able to make sound inferences with such a model, it has to be 

sufficiently valid for the task at hand. In this chapter, the validity of the 

developed model is discussed. This model should be sufficiently valid 

for showing what kind of additional insights may be obtained (into the 

relative importance of different primary sources of congestion, as well 

as into the effectiveness of proposed measures aimed at alleviating 

congestion) when the inherent variable nature of daily traffic 

congestion is explicitly taken into account. 

 

The validity of a simulation model (for a specific task) is determined by 

its inputs, parameters and underlying theories and assumptions. Three 

different levels of validity of a simulation model can be distinguished 

(Van Lint, 2008): 

- face validity (or content validity) 

- construct validity 

- predictive validity (or generality) 

These impose increasingly stronger constraints on the model. 

 

In sections 7.2 - 7.4, the developed model is assessed on these three 

levels of validity. This is based solely on theoretical considerations. 

Normally, one would assess the final validity of a model (i.e. its 

predictive validity) by means of a quantitative validation procedure. In 

section 7.5 it is argued, however, that the model at hand cannot be 

quantitatively validated in the usual way. Yet, some quantitative 

considerations are given in this section. These are considerations of a 

more general nature, relating to the computed congestion levels. 

  

7.2 Face validity 

A model is said to be face valid if its equations, parameters and 

characteristics are logically related to the characteristics of the system at 

hand and if it encompasses the minimally required detail to tackle the 

problem in question94. Apart from any possible remaining bugs in the 

model (for which a thorough check of its code is strongly desirable), it 

can be argued that the model is largely face valid for the task at hand 

(i.e. showing the gain of additional insights). This is ensured by the 

inclusion of all relevant sources of variability, and the use of a traffic 

flow modeling approach which is consistent with first order traffic flow 

theory (to which the capacity drop phenomenon has been added).  

                                                   
94 definition taken from Van Lint, 2008 
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This does not imply that the model is completely face valid, however. 

Two important deficiencies can be identified: 

- The absence of feedbacks from the actual traffic conditions to 

the traffic demands. In section 5.2.1 it was already discussed 

that the desired model property of realistically dealing with the 

route choice effects of traffic congestion (i.e. combining pre-

trip and en-route route choice behavior) was sacrificed in favor 

of other desired model properties. The feedback effects on the 

other travel choices (i.e. trip making decisions, destination 

choices, mode choices and departure time choices) are not 

included either. 

- The lack of a sound theoretical basis for the way of modeling 

the part of the capacity variations that is due to the intrinsic 

randomness in human driving behavior. This relates to one 

specific aspect of these variations, namely their spatial 

dependencies. This problem has been explained in chapter 6 

(section 6.2). Note that some other imperfections discussed in 

that chapter will affect the face validity as well. The two 

deficiencies mentioned here are considered the most important 

ones, however. 

These two deficiencies cannot easily be remedied. Including the route 

choice effects of traffic congestion is currently not possible in terms of 

required computation time. Incorporation of the effects on the other 

travel choices (trip making decisions, destination choices, mode choices 

and departure time choices) is unfeasible due to the lack of sufficient 

knowledge on these effects. This knowledge can only be obtained by 

conducting dedicated research. The elimination of the second 

deficiency would require substantial further research as well. 

 

7.3 Construct validity 

The second level of validity is construct validity. A model is construct 

valid if it is face valid and if its parameter values and inputs are 

mutually consistent and consistent with observations in reality 94. 

Provided that the model is face valid, this construct validity can be 

obtained by calibrating the model to real-life observations (i.e. tuning 

the inputs and model parameters in such a way that the outputs of the 

model match the real-life observations to a satisfactory degree). 

 

In principle, an extensive calibration procedure would not be necessary 

for the research tasks at hand. For these research tasks, construct 

validity is relatively easily accomplished. This is because of the fact that 

it is not intended to come up with firm quantitative inferences with 

respect to a specific existing situation. Instead, it is only aimed for to 

illustrate the gain of any possible additional/revised insights. The only 

requirement is then that the situation considered could have been a 

real-life situation. Consequently, all inputs and model parameters can 

be given any value within the range in which they occur in reality.  
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This turned out not to be as easy as it seems, however. For many of the 

parameters describing the effects of the different sources of variability 

values reported for other countries had to be used (because of a lack of 

information specifically relating to the situation in the Netherlands), or 

even assumed values (because of a general lack of knowledge). 

Consequently, it cannot be excluded that part of these parameter 

values are actually outside their ‘realistic range’. Although to a more 

limited extent, the same applies to part of the parameters describing 

the frequencies/patterns of occurrence of the different sources of 

variability. 

 

There are two basic strategies to overcome this (i.e. to enhance the 

construct validity of the model): 

- Conducting additional research into the parameters in question. 

- Calibration of the model (i.e. fitting to observations in reality).  

 

Note that a calibration of the model could not be limited to part of the 

parameters only. In this case, all inputs and parameters would have to 

be adapted to the specific real-life situation considered for the 

calibration. Otherwise, inadequacies of the values which are not 

calibrated would hamper the calibration of the others. Also note that 

for the calibration to a specific real-life situation, in fact, the model 

should be extended with additional parameters. This is because of the 

fact that in real life, certain sources of (temporal) variability are clearly 

variable over space 95 . Consequently, we cannot suffice with one 

(uniformly applied) parameter for the influence factors in question, 

when calibrating the model to a real-life situation. For the research 

tasks at hand (which relate to the temporal variability), the 

consideration of these spatial variations is not very important, which 

was the reason for not including them in the model. 

 

Obviously, the first strategy is very time-consuming, and likely to give a 

less optimal end result than the second one. Yet we might have to put 

up with it, however, because of the fact that the feasibility of the 

second strategy is very doubtful. This is due to the following: 

1. The deficiencies with respect to the face validity (discussed 

above) will prohibit a proper calibration of the model 

parameters. There is a risk of unintentionally compensating 

these deficiencies by errors in the calibrated values of certain 

model parameters, which is obviously very undesirable (because 

of the associated deterioration of the model’s predictive 

validity). 

2. The mathematical feasibility of the calibration procedure is to 

be doubted. This is because of the large number of parameters 

involved, and the large number of simulations that would have 

to be performed for each iteration of the calibration process 

again. 

                                                   
95 Clear examples of this are the spatial variations in the demand effects of vacations and in 

the frequency of occurrence of incidents. 
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3. A very long homogeneous series of empirical data would be 

required to obtain a sufficient statistical accuracy. Such a series 

is not available, however, due to: 

- (gradual) trends in especially the traffic demands (but in 

supply characteristics as well) 

- more  abrupt changes in the traffic system, due to 

infrastructure changes (including dynamic traffic 

management measures) or changes in the spatial setting 

(such as the realization of a new residential area) 

4. The problem is likely underdetermined. After all, there is a very 

large number of input variables and model parameters to be 

fitted, while there are only a few output indicators (which are, 

moreover, only partially independent of each other). Of course, 

the number of output indicators could be increased by 

considering a larger number of different statistical indicators, or 

by considering the route-based indicators for a larger number 

of different routes. The addition of more and more indicators 

will however be increasingly less effective, due to the 

dependencies between the different indicators. 

If the problem is underdetermined, the model will be over-

fitted. The calibration result makes little sense then, resulting in 

a very limited predictive validity (which might even be lower 

than in the situation in which part of the parameter values are 

based on data from other countries or on common sense 

assumptions). 

 

The last two problems might be (partially) overcome by calibrating the 

model at a lower level. That is, not at the level of the final model 

outputs (i.e. the considered indicators), but rather at the level of the 

results of the individual simulations. In this case we would use the 

model to compute the traffic conditions for empirical scenarios 

(reflecting the various sources of variability), and tune these computed 

traffic conditions to their empirical counterparts, by adjusting the model 

parameters that represent the effects of the sources of variability.  Note 

that the model would have to be adapted for this, because of the fact 

that the influencing circumstances are input here, while normally being 

part of the output as well. Also note that the model parameters relating 

to the frequencies/patterns of occurrence of the different sources of 

variability are not considered in this calibration approach. Therefore, 

these would have to be considered separately in this case (using 

empirical data on these frequencies/patterns of occurrence). 

 

By calibrating at the level of the results of the individual simulations, a 

lot more independent observations are obtained (one set of 

observations per individual simulation run), while the number of 

parameters to be fitted remains the same. This would solve problem 4. 

Problem 3 would be partially solved as well: although still a very long 

series of empirical observations would be required, this series would not 

have to be completely homogeneous anymore. Some changes in the 

traffic system could be compensated for, by adapting the model inputs 

(such as the network definition) for the simulation runs concerned. 
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The first two problems are not remedied by this alternative calibration 

approach, however. This means that even if this alternative approach 

would be used, a proper calibration seems unfeasible. 

 

7.4 Predictive validity 

The third level of model validity is predictive validity. A model has 

predictive validity if the model is both face and construct valid and if 

the predictions made with the model are consistent with the observed 

evolution of the system94. Obviously, the predictive validity of a model 

will not be better than its construct validity (which in turn is limited by 

any possible deficiencies in the face validity). As a result, the critical 

remarks regarding the face and construct validity of the model will 

apply equally well to its predictive validity. The relevance of the 

distinction between construct validity and predictive validity lies in the 

fact that if the model has been calibrated to a certain dataset (in order 

to achieve construct validity), it might still perform poorly in predicting 

the system behavior under slightly different circumstances (for instance 

due to over-fitting, as discussed above). The developed model has not 

been calibrated to empirical data, however. Therefore, the distinction 

between construct and predictive validity is not really relevant here.  

 

7.5 Quantitative considerations on the model validity 

In the above, the validity of the model has been discussed on the basis 

of theoretical considerations only. In fact, it would be desirable to 

assess this validity from a more practical perspective as well, by 

considering to what extent the indicator values computed for some 

(real-life) test scenario are consistent with or different from their 

empirical counterparts. From the theoretical considerations it is clear 

that that there will be differences, but not to what extent. However, it 

does not seem very worthwhile to perform such a quantitative 

validation procedure if the model has not been calibrated for the real-

life situation in question96 (which is considered unfeasible, as explained 

above).  

 

Yet, some quantitative considerations are given in this section. These 

are considerations of a more general nature, relating to the computed 

congestion levels. Based on some test runs (using the motorway 

network around the city of Rotterdam), two important observations 

have been made regarding these congestion levels: 

- In many of the traffic simulations, the computed traffic 

congestion seems unrealistically heavy for the circumstances at 

hand (i.e. the stochastic realizations of weather, incidents, road 

works, day of the week, month of the year, etc.). Certain types 

                                                   
96 Note that it is not meant here that the model should be calibrated on the same dataset as 

the one that would be used for the validation. Obviously, for the calibration and validation of 

a model two separate datasets have to be used.   
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of circumstances even frequently result in the occurrence of a 

gridlock in the traffic network. 

- The traffic congestion generated during the peak hours 

dissolves (much) too late in the traffic simulations. 

 

These two observations and their (possible) explanations will be 

discussed in the two subsections below. 

7.5.1 Unrealistically heavy traffic congestion 

Introduction 

In many of the traffic simulations, the computed traffic congestion 

seems unrealistically heavy for the circumstances at hand (i.e. the 

stochastic realizations of weather, incidents, road works, day of the 

week, month of the year, etc.). This does not seem to be a general 

problem of a too high base level of traffic demand or too unfavorable 

basis values for the traffic supply characteristics, however. This is 

concluded from the fact that the amount of traffic congestion for the 

representative situation appears to be reasonably realistic. This for 

example can be observed from Figure 8.4 and Figure 8.5, presented in 

chapter 8. 

 

Possible causes 

Different possible causes for the too heavy traffic congestion have been 

identified. First of all, there are the two deficiencies with respect to the 

face validity of the model, which were discussed in section 7.2: 

- The absence of feedbacks from the actual traffic conditions to 

the traffic demands. 

- The lack of a sound theoretical basis for the spatial dimension 

of the capacity randomization. 

 

It is evident that the absence of feedbacks to the traffic demands will 

play a role in the problem. In reality, travelers will react to 

‘abnormalities’ in the traffic conditions, by adapting their travel choices, 

as has been described in chapter 2. The larger these ‘abnormalities’ are, 

the larger the fraction of travelers to which this applies. The most 

important effect probably consists of changes in route choices, which 

are made in order to circumvent congested network parts. Obviously, 

these demand effects will have a limiting influence on the amount of 

traffic congestion. As discussed in section 7.2, these effects are not 

incorporated in the model, however (and cannot easily be added 

either). This will result in the model calculating too much traffic 

congestion, in particular for situations with a more serious local 

disruption, like an incident or road works. 

 

It is uncertain to what extent the second deficiency plays a part in the 

problem. In section 6.2 it was discussed that the minimum of the 

capacity realizations for all cells of a link is decisive for the amount of 

traffic that can traverse that link without inducing congestion. The 

smaller the cell length of the capacity variation is chosen 

(corresponding to a larger number of independent capacity realizations 

per link), the lower the expected value of this minimum will be. Due to 
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this effect, the cell length of the capacity variation is an important 

factor in the resulting traffic congestion levels. This is indeed observed 

if capacity realizations are uniformly applied to links as a whole (rather 

than generating multiple capacity realizations for different cells of a 

link). In this case, the amount of ‘excess congestion’ is substantially 

lower. 

  

This observation does however not automatically imply that this link-

based capacity variation is more realistic than the currently 

implemented cell-based variation (or, in other words, that this cell-

based capacity variation is a cause of the too heavy traffic congestion). 

If the capacities would be varied at the level of links, this would 

correspond to assuming a full dependency between the capacities at 

the different locations along a link. Such a full dependency is rather 

unrealistic, as explained in section 6.2. It could of course be, however, 

that the current modeling approach (which assumes complete 

dependence within cells, and complete independence between cells) 

does not adequately reflect the partial spatial dependency involved. 

Maybe larger cell sizes should be used for the randomization, or a 

modeling approach in which the dependency is gradually reduced with 

increasing distance, according to some correlation function. More 

clarity on this can however only be obtained by new research into the 

properties of the spatial dependencies.  

 

Other possible causes for the too heavy traffic congestion have been 

sought in: 

- the inclusion of the capacity drop in the traffic flow model 

(section 5.2.3) 

- the way of introducing the stochastic capacity realizations into 

the traffic flow modeling (section 5.3.3) 

- the mismatch between the demands and the capacity 

realizations (section 6.3) 

- the absence of physical traffic flow separations in the network 

definition of the test network 

- the random generation of road works (section 5.4.13) 

- the model parameter settings (section 7.3) 

 

By comparing the traffic conditions in simulations with and without the 

capacity drop, it was found that this capacity drop does not contribute 

importantly to the problem of the too heavy traffic congestion. As a 

matter of fact, the effects of the capacity drop even turned out to be 

smaller than expected. This might be related to the problem discussed 

in section 6.4. 

 

The role of the way in which the stochastic capacity realizations are 

introduced into the traffic flow modeling appeared not really important 

either. This was studied by employing alternative methods for this, 

which have been discussed in section 5.3.3. These alternative methods 

turned out to decrease the amount of traffic congestion somewhat, but 

not to a very important degree. 
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Section 6.3 discussed the problem that the 5-minute capacity 

realizations are confronted with traffic demands that inevitably develop 

variations with the time step of the traffic flow simulation (which is 

much smaller). Due to the non-linearity of the traffic system (meaning 

that a temporary capacity shortage is not cancelled out by an equal 

capacity surplus in another time interval), this will result in extra 

congestion, although it is not clear to which extent. It is estimated that 

the effect is relatively limited, however. 

 

Another possible cause of the too heavy congestion is found in the 

specification of the network used in the test runs (being the motorway 

network around the city of Rotterdam). In this network definition all 

motorways are modeled as a single roadway per direction. In reality, 

however, many motorways in this network consist of multiple physically 

separated roadways per direction. Due to the absence of this physical 

separation in the model, traffic congestion spreads out over the 

network more easily than in reality. This might be a significant 

contributory factor to the discrepancy between the (high) levels of 

traffic congestion observed in the model and those observed in reality. 

 

A more specific partial cause of the problem is found in the stochastic 

simulation of (short-term) road works. These road works are regularly 

observed to have an unrealistically severe impact on the traffic 

conditions in the network. To an important extent, this can be 

attributed to the fact that the model only to a limited degree takes into 

account that road works in reality are very carefully planned, taking 

into account the expected traffic conditions during the road works.  

 

The model does account for the fact that there are less road works 

going on during the busier times of the day, by using: 

- an empirical probability distribution for the starting time of the 

road works, and 

- an empirical probability distribution for the duration of the road 

works, which is conditional on the generated starting time. 

For the severity of the road works (referring to the number of lanes 

that are closed) an empirical probability distribution is used as well. This 

distribution is not conditional on the time of the day, however. This is 

an important limitation, since it results in the simulation of severe road 

works on busy times of the day, which is clearly unrealistic. Another 

important limitation is that it is not accounted for that some roads have 

less spare capacity than others, which influences the likelihood of the 

execution of road works during certain parts of the day. 

 

Finally, any possible inadequacies in the model parameter settings may 

play a role in the problem as well. In section 7.3 it was explained that it 

cannot be excluded that some of the parameter values are outside their 

‘realistic range’. It was also explained here that this problem can only 

be remedied by conducting (time-consuming) dedicated research into 

the parameters in question, since a proper calibration of the model is 

considered unfeasible. 

 



 
 
 

 

 

 
 227 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

Gridlocks 

For certain types of unfavorable demand/supply realizations, the too 

heavy congestion even often ends up in the occurrence of a gridlock in 

the traffic network. In such cases a traffic jam on the (ring-shaped) test 

network grows so long that finally its tail reaches its own head, after 

which the traffic comes to a complete stand-still. Once such a ring-

shaped traffic jam has arisen, it will sustain itself, since car drivers 

basically are ‘waiting for themselves’. In the vast majority of cases, the 

gridlock it is triggered by one or more incidents and/or road works. 

Here probably the absence of a feedback loop to the route choices of 

the road users and the difficulties in proper simulating road works play 

a dominant role. 

 

In reality, true gridlocks do not occur, or at least will resolve within a 

limited period of time. This is due to the fact that road users will 

change their routes if traffic conditions on their originally intended 

route get too adverse, which is not accounted for in the model.  

 

It might be clear that traffic simulations in which a gridlock occurs 

cannot give any useful output anymore. The travel times for example 

go to infinity in such a situation. Therefore, the model is programmed 

to remove the output data of such simulations from the output 

database on which the final statistical evaluations are performed. While 

this may currently be the only solution, it actually is a very undesirable 

one, since it is expected to create a huge bias in the statistical output 

indicators. After all, the gridlock phenomenon does not occur randomly 

over the different simulation runs, but typically in one specific subset of 

these, namely the subset of simulations with relatively unfavorable 

realizations of certain demand/supply characteristics. 

 

Because of this, it is considered absolutely necessary to prevent these 

gridlocks from occurring. This can only be achieved by integrating a 

traffic-responsive route choice component in the model. For this, the 

hybrid route choice modeling approach described in (Pel et al, 2009) is 

advised. This is however technically not yet feasible within an 

acceptable computation time. Therefore, it is advised to study 

possibilities for reducing the required calculation time. 

7.5.2 Traffic congestion dissolving too late 

Besides the problem of the traffic congestion being too heavy in many 

of the simulation runs, another problem that was observed is that the 

traffic congestion generated during the peak hours dissolves (much) too 

late. Obviously, to some extent the problem discussed above will play a 

role in this. After all, the heavier the congestion is, the more time it will 

take for the traffic system to recover from this congestion. Another 

possible cause for this discrepancy with reality might be found in the 

phenomenon that on motorways often an early peak in the traffic 

demand is observed, caused by travelers that depart early, in order to 

pass through certain bottlenecks before the daily traffic jams emerge. 

This phenomenon is not taken into account in the model. 
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Although this issue is something to be aware of when interpreting the 

model results, it is considered not very problematic for the research 

tasks at hand. 

 

7.6 Conclusion 

Although the model is considered largely valid for the research tasks at 

hand (in which it is not aimed for to come up with firm quantitative 

inferences regarding specific existing situations), there are some 

deficiencies which cause too much congestion to be generated in many 

of the simulations. These are deficiencies in the mechanisms included in 

the model, but possibly also some inadequacies in the model parameter 

values. It has not been possible to solve this problem within this 

project, since most of these deficiencies require substantial further 

investigation. 

 

Of course, this does not mean that these deficiencies can simply be 

ignored in the analyses with the model. They will be respected in the 

following ways: 

- Incidents and road works will be left out of the analyses, in 

view of the apparent inability of the model to deal with these in 

a valid way. 

- All model results will have to be interpreted with caution, taking 

into account that too much congestion is generated in many of 

the simulations (even if incidents and road works are excluded). 

 



 
 
 

 

 

 
 229 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

8. Model results 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.1 Introduction 

In this chapter the results obtained with the developed model are 

presented. It should be noted however that only 350 simulation runs 

were performed per evaluation, in order to be able to generate some 

model output within an acceptable period of time. Obviously, this 

number of simulations is way too low to obtain results with any 

reasonable statistical accuracy / reliability. Therefore, all model results 

presented below should be interpreted with care. It is believed, though, 

that the presented mutual comparisons of different scenarios can still 

provide some valuable qualitative information, as a result of the 

modeling efforts to ensure comparison under ceteris paribus conditions 

(i.e. the efforts to make sure that for the simulations of different 

scenarios exactly the same pseudo-random numbers are used at the 

same places within the model97, irrespective of the user control settings 

with respect to the ‘activation' of the different sources of variation). 

 

In the next section first of all a description is given of the network for 

which the model evaluations have been performed. Section 8.3 deals 

with the indicators that have been considered. After that, section 8.4 

discusses the model outputs for the representative situation (i.e., a 

‘nominal’ weekday, without any variable influences except for a 

deterministic traffic demand variation with the time of the day). This 

typically is the output obtained by a traditional calculation of the traffic 

conditions in a network. Next, section 8.5 treats the results obtained by 

a calculation in which all different sources of variability are taken into 

account, and compares these with the output for the representative 

situation. Section 8.6 then shows that the relative importance of these 

different sources can be studied by deactivating them in the model. 

This provides insights which cannot be obtained with a traditional 

evaluation. Section 8.7 finally considers the effects of a rush-hour lane, 

as computed with the new model, in which various sources of 

variability are taken into account, and compares these with the effects 

that would have been found with a calculation according to the 

traditional approach (considering a representative situation only). 

 

The chapter ends with a section on the practical applicability of the 

developed model. In this section it is discussed whether/how this model 

could be used for practical application within the context of real-life 

evaluations of measures proposed to alleviate traffic congestion. 

                                                   
97 except for the modeling of the intrinsic randomness in the travel demands, as discussed in 

section 6.5 



 
 
 

 

 

 
 230 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

8.2 Test network 

For the quantitative evaluations the motorway network around the 

Dutch city of Rotterdam (see Figure 8.1) was selected as test network. 

This choice was mainly made because of the facts that this network: 

- was readily available in JDSMART (including an accompanying 

origin-destination demand matrix, albeit a static one, which 

covers the morning peak only), 

- is a reasonably sized real-life network, and 

- has a layout which is quite representative for road networks 

with a lot of congestion problems, as found in many large 

urban areas (i.e., a layout with many on- and off-ramps and 

interchanges, potentially giving rise to blocking back effects).  

 

 
 

It should be noted that it would have been better to use a larger sized 

network, in order to reduce the relative influence of its boundaries. Inevitably, 

these network boundaries will affect the results of the quantitative 

evaluations, because of the associated neglect of all network effects that 

‘come from outside’. Probably, this will artificially lower the variability in 

the (calculated) traffic conditions. The use of a larger sized network was 

prohibited by the requirement of a limited calculation time, however.  

 

Note that there is no need for a thorough calibration of the model for 

the situation around Rotterdam. A crude calibration (i.e. making the 

computed network traffic conditions roughly resemble those observed 

in reality) was already performed in the research project from which the 

network and origin-destination matrix have been taken (Zuurbier et al, 

2006). Even though the route choice modeling was different here, this 

is considered sufficient. After all, for addressing the research questions 

at hand it is not necessary to ‘match’ an actually existing situation. In 

fact, considering a complete fictitious situation would do as well, as 

long as it ‘could have been’ a real-life situation. The advantage of using 

a real-life network however is that this latter (i.e. that it ‘could have 

been’ a real-life situation) is made much more likely then, even without 

an extensive calibration. Obviously, this will only be true if the 

(representative) demand and supply settings make sense. It is assumed 

that this is ensured here by the crude calibration mentioned above. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.1: The test network selected 
for the quantitative evaluations 
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As shown in Figure 8.1, besides the motorway network the test network 

also contains the most important roads of the secondary network. Since 

the focus is on the motorway network, and the route choice effect of 

traffic congestion (i.e. the effect that road users might deviate to other 

roads in case of significant disruptions on their ‘standard’ routes) is not 

considered (because of the inability to properly model this; see section 

5.2), this is actually of little use, while contributing significantly to the 

required computation time. However, it should be appreciated that it 

would be a fairly laborious task to remove these secondary roads from 

the network, because of the fact that the (destination-specific) traffic 

demands from the origins on the secondary network then would have to 

be translated into corresponding (destination-specific) traffic demands at 

the on- and off-ramps of the motorway network. The difficulty here is in 

the fact that one origin (destination) does not have a one-on-one 

correspondence with a certain on-ramp (off-ramp). 
 

8.3 Indicators considered 

In chapter 3 it was extensively discussed which performance indicators 
should be considered in an evaluation in which the probabilistic nature 

of traffic congestion is explicitly taken into account. This finally resulted 
in a set of selected indicators, given in section 3.4. 
 
In the quantitative evaluations presented in this chapter, not all of the 
indicators from this set are considered, however. This is directly related 
to the fact that the developed model does not include a feedback loop 
from the traffic conditions to the traffic demands. It obviously does not 

make sense then to consider indicators VII (the number of travelers on 
origin-destination relations) and VIII (the total number of vehicle-
kilometers traveled on the network), which were selected precisely 
because of the existence of this feedback loop. 
 
The various travel time statistics are considered in a simplified way. In 

chapter 3 it was argued that in fact two different types of travel time 
statistics should be considered, corresponding to two extremes 
regarding route choice: 

- assuming a fixed route choice (i.e. assuming that the road users 
in all situations hold on to their standard/intended routes), and 

- assuming an optimal route choice (i.e. assuming that the road 

users at all times are able (and willing) to select the route that 
will yield them the shortest travel time). 

However, in the developed model the travel time statistics are only 
computed for given routes, corresponding to the assumption of a fixed 
route choice. 
 

Six different routes are considered here (three in two directions):  

1. A15 Eastbound 5. A15   A4   A20 

2. A15 Westbound 6. A20   A4   A15 

3. A13  A20  A16 

4. A16  A20  A13 

These routes are depicted in the figure below. Together, they cover a 

large part of the motorway network. 
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Finally a remark should be made with respect to public holidays and 

vacation periods. In section 3.4 it was indicated that the travel times on 

public holidays in fact should be included in the travel time distributions 

for Sunday, rather than in the travel time distributions for the actual 

day. Further it was indicated that vacation periods actually should be 

excluded from the day-to-day travel time distributions. For reasons of 

simplification, here these two matters have been disregarded, however. 

 

8.4 Representative situation 

In the tables and figures below, the model outputs obtained for the 

representative situation are shown. These outputs represent the traffic 

system’s performance according to the traditional evaluation approach, 

in which only this representative situation is considered. All sources of 

variability are ignored here, except for the systematic demand variation 

with the time of the day. 

 

Please note that the travel time statistics for specific times of the day 

are not defined for the representative situation, due to the fact that 

they refer to a variability which is not modeled in this case. Similarly, 

the travel time instabilities cannot be given as distributions in this  case, 

but only as deterministic values. 

 

INDICATORS I–V (TRAVEL TIME STATISTICS): 

 

Statistics of the overall travel time distribution: 

 

Route 
 

Indicator 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

I.   TT_90 1.15 1.19 1.10 1.10 1.11 1.11 

II.  TT_mean 1.11 1.08 1.05 1.05 1.05 1.05 

III. TT_median 1.07 1.08 1.05 1.05 1.05 1.05 

IV. TT_width 0.15 0.19 0.09 0.10 0.10 0.11 

V.  TT_skew 1.10 1.54 0.84 1.02 1.14 1.17 

Note: all values of indicators I-IV are made dimensionless by division by the free flow 

travel time. Indicator V is already dimensionless by itself . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.2: The six considered routes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 8.1: Representative values of 
the statistics of the overall travel 
time distributions 
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Statistics of the travel time distributions for specific times of the day: 

 

TT90, TTmean, TTmedian, TTwidth and TTskew are not defined for specific times 

of the day. Instead, only the representative travel time values can be 

given. These are shown in the figure below: 
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In all travel time curves clear morning and evening peaks can be 

observed. For some of the routes these peaks in travel time are more 

pronounced than for others, which is logically connected to the 

presence or absence of bottlenecks on these routes. Further, it can be 

observed that some of the bottlenecks are active in both peak periods, 

while others are active in the morning or evening peak period only. The 

travel times clearly are lowest during the night. 

 

INDICATOR VI (TRAVEL TIME INSTABILITY): 

 

Route 
 

Time of the day 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

03:00 0.00 0.00 0.00 0.00 0.00 0.00 

07:00 0.01 0.01 0.01 0.01 0.01 0.01 

08:00 0.00 0.01 0.00 0.03 0.04 0.02 

09:00 -0.01 -0.04 0.00 -0.04 -0.08 0.00 

13:00 0.00 0.00 0.00 0.00 0.00 0.00 

16:00 0.01 0.01 0.00 0.00 0.01 0.01 

17:00 0.08 0.03 0.00 0.00 0.00 0.00 

18:00 0.00 -0.04 0.00 -0.01 -0.01 0.00 

21:00 0.00 0.00 0.00 0.00 0.00 0.00 

 

INDICATOR IX (NUMBER OF LOST VEHICLE HOURS): 

LVH = 2644 hours (over a 24-hours period) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.3: The representative travel 
times as a function of the time of the 
day (representing the travel times as 
obtained by a traditional performance 
evaluation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 8.2: Representative values of 
indicator VI (reflecting the travel 
time instability) 
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In order to give an impression of the spatial characteristics of the traffic 

congestion in the representative situation, the two figures below show 

the traffic states at 8:30 and 17:30, respectively. Green colors indicate 

free flowing traffic, while red colors indicate congested traffic. 

 

 
 

 
 

8.5 Results of the model run with full variability 

8.5.1 Introduction 

In this section, the results of the model run with full variability (i.e. 

including the various sources of variability) are provided. In the 

remainder of this chapter, these results are used as a kind of 

‘benchmark’ for analyzing the relative contributions of the different 

primary sources of congestion, and the effectiveness of a given traffic 

measure.  

 

It should however be noted that two sources of variability have been 

omitted in this model run, namely road works and incidents.  In section 

7.6 it was concluded that these are better left out of the analyses, in 

view of the apparent current inability of the model to deal with these in 

a valid way. The inclusion of road works and/or incidents results too 

frequently in excessive traffic congestion being created (often giving 

rise to the occurrence of a gridlock). It is impossible then to make any 

sound inferences. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.4: The representative traffic 
situation at 8:30 (with green colors 
indicating free flowing traffic, and 
red colors congested traffic) 
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.5: The representative traffic 
situation at 17:30 (with green colors 
indicating free flowing traffic, and 
red colors congested traffic) 
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It should also be noted that the results of 3 of the 350 simulations had 

to be excluded from the model output, because of the fact that a 

gridlock occurred (in spite of the exclusion of incidents and road 

works). This problem has been discussed in section 7.5.1. 

 

Section 8.5.2 presents the obtained results, and compares these with 

the ‘representative’ calculation results. Section 8.5.3 then draws some 

conclusions with respect to the observed differences, and tries to 

explain these. Finally, section 8.5.4 provides an analysis of the 

sensitivity of the results to an important model uncertainty. 

8.5.2 Results 

 

INDICATORS I–V (TRAVEL TIME STATISTICS): 

 

Statistics of the overall travel time distribution: 

 

In the figure below, the computed statistics of the overall travel time 

distributions are compared with their ‘representative’ counterparts 

(provided in the previous section). Note that for the computation of 

these statistics only one travel time value per simulated day was used 

(per route), in order to avoid introducing a bias due to dependencies 

between the travel time values. The times of the day for which these 

travel times were taken were randomly selected per simulated day. 

 

Clearly, the 90th percentile and mean travel times are much larger if the 

different sources of variability are accounted for. For the width and 

especially the skew of the travel time distributions this is even more so.  

It should be noted here, however, that the differences will be 

overestimated in the figure, due to the problem discussed in section 

7.5.1 (i.e. the fact that the calculated traffic congestion is too heavy in 

many of the simulations). Especially the skew of the distributions will be 

sensitive to this problem. 

 

The median travel times are not really affected by the inclusion of the 

various sources of variability. Here it should be noted, however, that 

this is probably partly due to the fact that weekend days are also 

included now, while the ‘representative’ situation in fact reflects a 

weekday. If the weekend day travel times would have been excluded 

from the computation of the statistics, probably the median travel times 

would have been (somewhat) higher than their ‘representative’ 

counterparts as well. 
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Note: all values of the first four indicators have been made dimensionless by division 

by the free flow travel time. The fifth indicator (i.e. the skew) is already dimensionless 

by itself. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.6: The computed statistics 
of the overall travel time 
distributions (90th-percentile, mean, 
median, width and skew), compared 
with their ‘representative’ 
counterparts 
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Statistics of the travel time distributions for specific times of the day: 

 

By way of example, below the travel time statistics I-III for one of the 

different routes are shown, as a function of the time of the day 

(separately for the different categories of days). Please note that for 

Saturday and Sunday a different scaling for the vertical axis has been 

used. 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.7: The travel time statistics 
(90th-percentile, mean and median) 
computed for route 6, as a function 
of the time of day and the category 
of days. For the purpose of 
comparison, the representative travel 
time is included as well (for 
weekdays only). 
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The figure below provides an example of a travel time distribution 

computed for a particular time of the day. In Appendix 3 some travel 

time distributions for other times of the day are given. 

 

Note that some values are very high indeed (especially if one considers 

that road works and incidents have not been included in the 

simulations). This is related to the simulation problem discussed in 

section 7.5.1. 
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In the figures it can clearly been seen that the representative calculation 

does not provide a good impression of the situation on this route. It 

predicts hardly any congestion, while the travel time statistics indicate 

that frequently a significant delay might be experienced. 

 

In the evening peak, the mean travel time is clearly observed to be 

larger than the median travel time. This is obviously related to the 

skewness of the travel time distribution. The 90th percentile travel time 

reaches very high values during the evening peak. Such high values 

seem unrealistic. They can be related to the problem mentioned above. 

One of the causes is that it is not accounted for in the model that if the 

traffic conditions get really bad, travelers will reconsider their travel 

choices (like route and departure time), resulting in lower traffic  

demands and consequentially lower travel times. 

 

On Fridays the morning peak clearly results in less congestion than on the 

other weekdays, while the evening peak causes more congestion 

problems. For Saturdays and Sundays little congestion is calculated.  

Remarkable is that for the middle of these days the mean travel time is 

found to be larger than the 90th percentile travel time. This must be due to 

some (relatively) large peaks, which occur in less than 10% of the cases. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.8: Distribution of the travel 
time on route 6 at 17:00, computed 
for Monday – Thursday  
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

 

 
 239 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

Below, for the same route the travel time statistics IV and V (i.e. the 

distribution width and skewness) are shown, as a function of the time 

of the day. Note that the distribution widths for Saturday and Sunday 

have been omitted. The reason for this is that these widths are very 

small throughout the day (with maxima of only a few percent of the 

free flow travel time). 

 

 
 

 

 
 

For weekdays, it is found that the distribution skewness is largest 

during the periods before and after the peak periods. After the evening 

peak extremely high values are reached. This will undoubtedly be 

caused by the fact that on some days the evening peak congestion is 

not yet resolved then, while on most days practically all congestion has 

disappeared already. This results in a large difference between the 90 th 

and 50th percentile travel times, while the difference between the 10 th 

and 50th percentile travel times is almost zero. Since the skewness is 

computed as (TT90—TT50)/ (TT50—TT10) (see chapter 3), this will 

obviously result in extremely large skewness values. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.9: The width of the travel 
time distribution computed for route 
6, as a function of the time of day 
(separately for Mon-Thu and Fri)  
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.10: The skewness of the 
travel time distribution computed for 
route 6, as a function of the time of 
day (separately for the different 
categories of days)  
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For the other five routes qualitatively similar pictures are obtained for 

the different travel time statistics as for the route considered above, 

except for the facts that: 

- On part of the routes the daytime off-peak period is associated 

with higher (dimensionless) 90th-percentile and mean travel 

times than the route considered above. 

- On some of the routes the mean travel time is sometimes found 

to be lower than the median. 

- On part of the routes the morning peak is associated with more 

congestion than the evening peak (instead of the other way around). 

- On some routes also in the daytime off-peak period extremely 

high skewness values are reached. 
 

INDICATOR VI (TRAVEL TIME INSTABILITY): 
 

The figure below shows the computed diagrams of the travel time 

instability for different times of the day (relating to weekdays), again 

taking route 6 as example. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.11: The travel time 
instability on route 6, for different 
times of the day (for weekdays only)  
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From the figure it can be seen that the travel time is most unstable 

during the peak periods and (shortly) afterwards. The results clearly 

indicate that the traffic conditions may change much faster during 

one’s trip than reflected in the results of the representative calculation. 

It can also be seen that the changes in travel time are highly uncertain. 

 

The result of this instability in the travel times is that road users cannot 

accurately predict their future travel times from the traffic conditions at 

the moment of departure. This results in costs to society, related to late 

arrivals and unused buffer time, as discussed in chapter 3.    

 

INDICATOR IX (NUMBER OF LOST VEHICLE HOURS): 

 

The figure below shows the amounts of lost vehicle hours (incurred 

within the boundaries of the network), separately for weekdays and 

weekend days. The representative calculation clearly results in an 

underestimation of the amount of traffic congestion. It the figure the 

difference is exaggerated, however, due to the problem discussed in 

section 7.5.1. 

 

 
 

The figure shows that the mean number of lost vehicle hours is larger 

than the median value. This indicates that its probability distribution is 

skewed. This is logically related to the fact that traffic conditions can be 

very bad (virtually without any upper bound), but not better than free 

flow. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.12: The computed values of 
the mean and median numbers of 
lost vehicle hours (incurred within 
the boundaries of the network), 
compared with the number of lost 
vehicle hours in the representative 
situation 
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8.5.3 Discussion 

From the provided results it is clear that the ‘representative’ calculation 

does not give a good impression of the performance of the traffic 

system. This is not only due to the obvious fact that the (day-to-day) 

uncertainty aspect of this performance is disregarded (due to the 

neglect of the day-to-day variability in the traffic conditions). Also, the 

‘representative’ calculation turns out to result in an underestimation of 

the congestion indicators. That is, the traffic congestion calculated for 

the ‘representative’ situation (i.e. the situation in which all demand and 

supply characteristics are at their ‘representative’ level, which for 

example could be the mean or median value) is not so ‘representative’ 

itself. 

 

Two explanations can be given for this. The first explanation can be 

found in the fact that some of the sources of variability affect the traffic 

conditions by nature purely in a negative way. Examples of these are 

adverse weather conditions and incidents. By neglecting such sources of 

variability, the traffic congestion is obviously underestimated by the 

representative calculation. 

 

Other sources of variability do not by nature affect the traffic 

conditions in a purely negative way. Consider for example the capacity 

variation due to the intrinsic randomness in human driving behavior. 

Sometimes the capacity is below its mean (or median) value, resulting 

in heavier traffic congestion, but at other times it is above it, resulting 

in less congestion. Something similar applies in the spatial dimension: at 

some locations the capacity will be below its mean or median value 

(resulting in heavier congestion), whereas at other locations (in the 

network / along a route) it may be above it (resulting in less 

congestion)98.  

 

Often, these positive and negative realizations do not cancel out, 

however. This is due to the non-linearity in the traffic system. This non-

linearity is in the facts that: 

- Traffic conditions can be very severe (virtually without any 

upper limit), but conversely not better than free flow. 

- A capacity exceedance that is twice as large (or twice as long in 

duration) causes more than twice as much delay. 

 

Due to this non-linearity in the behavior of the traffic system, it is likely 

that the detriments of the ‘negative occurrences’ (i.e. lower capacity 

realizations or higher demand realizations) are larger than the benefits 

of the ‘positive occurrences’ (i.e. higher capacity realizations or lower 

demand realizations). This way, sources of variability may have a net 

negative impact on the traffic conditions, even if these do not act by 

nature in a purely negative way. This is the second explanation for the 

fact that the neglect of the variability results in an underestimation of 

the values of the congestion indicators. 

                                                   
98 Obviously, this only applies to the extent that the capacities (and demands) at different 

locations are independent from each other. 
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From the presented results it can be observed that the mean indicator 

values generally differ more from the representative values than the 

median indicator values. This is due both to the fact that the traffic 

system behaves in a non-linear way (as explained above) and to the 

fact that some sources of variability occur only on an occasional basis 

(and consequently hardly affect the median traffic conditions). 

 

In practice, the underestimation by the ‘representative’ calculation 

would typically be counteracted to some extent by calibrating the 

traffic simulation model to an (empirical) congestion level that is 

considered representative. In such a calibration procedure, the neglect 

of the variability is partly compensated for by adjusting the values of 

the inputs and/or model parameters (usually mainly the bottleneck 

capacities). This is clearly not an optimal way of ‘accounting for the 

variability’, though. First of all, the calibrated model can be expected to 

have a limited predictive validity. After all, under changed conditions 

(reflecting some future scenario to be evaluated with the model) the 

parameter adjustments needed to compensate for the variability might 

be different from those found for the calibration case. 

 

Secondly, it might be impossible to compensate for the variability (by 

means of parameter adjustments) in a consistent way. This depends on 

what kind of level is considered representative (e.g. the median or the 

average). If the traffic model is calibrated in such a way that it properly 

reproduces the median congestion levels at the individual bottleneck 

locations, it cannot simultaneously reproduce the medians of route or 

network based congestion indicators in a proper way. This is due to the 

fact that the sum of the medians of the congestion levels will not be 

equal to the median of the sum of these levels. If average levels are 

considered representative (instead of medians), this is different, 

however. After all, the sum of the averages of variables is always equal 

to the average of the sum of these variables. 

 

Even apart from these two issues, however, such a calibration will not 

satisfactorily resolve the shortcomings of the ‘representative’ evaluation 

approach that have been identified above, because: 

- In terms of the average performance, the traffic congestion will 

still be underestimated. This is due to the fact that the empirical 

congestion level to which the model is calibrated is typically not 

the overall average level, but rather a level which is considered 

representative for regular circumstances (i.e. excluding 

situations with disturbances such as incidents and possibly also 

bad weather events). 

- The (day-to-day) uncertainty aspect of the performance 

remains ignored in the evaluation. 
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8.5.4 Sensitivity to the spatial dependencies in the capacity randomness 

In section 6.2 and chapter 7, the lack of a sound theoretical basis for 

the modeling of the spatial dependencies in the part of the capacity 

variability that is due to the intrinsic randomness in driving behavior 

was identified as a deficiency in the model. Because of the fact that the 

model outcomes appear reasonably sensitive to the spatial dimension of 

these dependencies, a small sensitivity analysis has been performed on 

this aspect. 

 

The dimension of the spatial dependencies is reflected in the size of the 

cells that are used for the capacity randomization. Within these cells, 

the local capacities are assumed to be fully dependent. This is reflected 

in the fact that per cell one single capacity value is drawn (from the 

probability distribution function of the capacity), which is assumed to 

apply to the whole of the cell. Between the different cells, complete 

independency is assumed. This is reflected in the fact that the capacity 

values for the different cells are independently drawn from the 

probability distribution. 

 

In the model, the cell size for the capacity randomization is chosen 

equal to the cell size of the numerical solution scheme of the dynamic 

traffic simulator. As discussed in section 6.2, this choice was a purely 

pragmatic one, related to the fact that no knowledge is available on the 

spatial length scales of the dependencies. In section 7.5.1 it was 

discussed that in many of the traffic simulations unrealistically heavy 

traffic congestion is generated. It was also explained here that, 

hypothetically, a (partial) cause for this could be that the cell size of the 

capacity randomization is currently too small (corresponding to too little 

spatial dependency in the capacity randomness). Therefore, in the 

sensitivity analysis a situation with a larger cell size was considered99. 

More specifically, the ‘extreme’ case of the cell size being equal to the 

link length was studied, which means that the capacities were varied at 

the level of links as a whole. This corresponds to the implicit 

assumption that the capacities are fully dependent over the whole 

length of the link. Although this is clearly not realistic, it should be 

noted that on the other hand the capacities of the different links are 

still completely independent from each other, whereas in reality there 

might be some (limited) dependencies between the capacities of 

adjoining links as well. 

 

                                                   
99 Of course, this only relates to the cell size of the capacity randomization. The cell size of 

the numerical solution scheme of the dynamic traffic simulator is not altered. 
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The sensitivity analysis has been performed by recalculating all output 

diagrams presented in this section (i.e. Figure 8.6 – Figure 8.12). The 

results of this calculation with the modified model are provided in 

Appendix A4.1. From these results it is clear that in the traffic 

simulations generally much less traffic congestion is generated then, 

which is in line with the discussion in section 6.2 100 . Since the 

(unmodified) model generates too much congestion in many of the 

simulation runs (as discussed in section 7.5.1), this decrease in the 

amount of congestion results in the traffic conditions looking more 

realistic. This observation does not automatically imply, however, that 

this modified way of modeling the random capacity variation is also 

more realistic itself. Theoretically, it could also be that this change in 

the model does not improve its realism, but just ‘luckily’ compensates 

for other deficiencies. More clarity on this can only be obtained by 

conducting dedicated research into the spatial dependencies in the 

random capacity variation. 

 

Due to the fact that much less congestion is generated by the modified 

model, the quantitative differences between the variable case and the 

representative situation are much smaller then. Qualitatively, the main 

conclusion drawn in section 8.5.3 remains largely valid, however. It is 

still concluded that the ‘representative’ calculation does not give a good 

impression of the performance of the traffic system, which is not only 

due to the obvious fact that the (day-to-day) uncertainty aspect of this 

performance is disregarded, but also due to the underestimation of 

some congestion indicators. 

 

This underestimation mainly applies to: 

- The amount of lost vehicle hours (Figure A4.7): 

Both the mean and median (for weekdays) are significantly 

larger than the representative amount of lost vehicle hours. 

- The mean values of the day-to-day travel time distributions 

(Figure A4.2): 

During the peak periods, the average travel time is well above 

the representative travel time101. 

 

                                                   
100 In this section, it was explained that the minimum of the capacity realizations for all cells of 

a link is decisive for the amount of traffic that can traverse that link without inducing 

congestion. The shorter the cell length of the capacity variation is chosen (corresponding to a 

larger number of independent capacity realizations per link), the lower the expected value of 

this minimum will be, resulting in more congestion. Since in this sensitivity analysis the cell 

length is chosen equal to the link length (corresponding to a situation with only one capacity 

realization per link), the expected value of this minimum is at its highest possible value here 

(i.e. simply equal to the expected value of the cell capacity distribution function itself). It is 

obvious that this may result in much less congestion being calculated. 

101 Note that in Figure A4.2 only one route is considered. It cannot be excluded that for other 

routes different findings would be obtained. 
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Important differences in the results are that: 

- According to the outcomes of the modified model (Figure 

A4.2), the representative travel time is a very good 

representation of the median travel time during the evening 

peak and Friday morning peak, whereas according to the 

outcomes presented in section 8.5.2 (Figure 8.7) it significantly 

underestimates this median during these peak periods101. 

- Although it is still found that the statistics of the overall travel 

time distributions (i.e. the distributions relating to the 

combination of all days of week and times of day) are 

underestimated by the representative calculation, the 

differences are very small according to the outcomes of the 

modified model (Figure A4.1). This seems to contradict the 

substantial underestimations (in the amount of lost vehicle 

hours and the representative travel times) that were mentioned 

above. However, this small size of the differences can be 

logically explained from the facts that: 

- The different routes are free of congestion during by far 

the largest part of the time, both in the ‘representative’ 

situation and in the variable case. As a result, the 

median, mean and 90th-percentile travel times are all 

reasonably close to the free flow travel times, in both 

the representative situation and the variable case. As a 

result, all differences are relatively small. It should be 

noted, however, that – as far the mean and 90th-

percentile values are concerned – the relative differences 

in terms of delay (rather than travel time) are 

substantial. 

- The overall travel time distribution obtained by the 

representative calculation refers to a (‘nominal’) 

weekday, while its counterpart for the variable case 

covers weekend days as well. This means that the 

comparison is in fact ‘unfair’, since weekend days are 

typically less congested. 
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8.6 Relative importance of different sources of variation 

8.6.1 Introduction 

This section illustrates that explicitly accounting for the different 

sources of variability can provide us with new insights into the relative 

importance of these different influence factors. By way of example, six 

of these factors will be mutually compared on their relative 

contributions to the congestion indicators. These are:  

- the intrinsic randomness in human driving behavior, 

- the intrinsic randomness in people’s travel decisions, 

- weather conditions, 

- luminance conditions (daylight or darkness), 

- events, and 

- the demand variation with the month of the year. 

 

The influences of these different contributory factors are analyzed in 

the following way: 

- For each of these factors a new model run is performed, in 

which the concerning factor is ‘switched off’ (i.e. is omitted 

from the model). 

- The results of these model runs are compared with those of the 

model run with full variability (i.e. including the various sources 

of variability – see section 8.5), which is used as a kind of 

‘benchmark’. That is, it is computed to what extent the various 

congestion indicators are changed by ‘switching off’ the 

different sources of variability. 

- These relative changes in the indicators values are compared 

between the different sources of variability, in order to establish 

the relative influences of the latters. 

 

The results of these analyses are presented in subsection 8.6.2. Next, 

subsection 8.6.3 tries to draw some general conclusions from these 

results, and discusses the practical implications of these conclusions. 

Finally, subsection 8.6.4 discusses the results of a small sensitivity 

analysis of the results, comparable to the sensitivity analysis discussed 

in section 8.5.4. 

 

Please note that the relative importance of the different contributory 

factors is studied by ’switching off’ the factor in question, rather than 

by isolating it (i.e. ‘switching off‘ all other contributory factors). The 

main reason for this is in the dependencies between the different 

sources of variability. Due to these dependencies, most sources of 

variability affect the traffic conditions not only by their ‘own’ (i.e. 

direct) effects on demand and supply, but also by their effects on other 

sources of variability (affecting demand and supply in an indirect way). 

If the (influences of) the different sources of variability would be 

considered in an isolated way, these latter effects would be ignored. 

This means that the comparison between the different sources of 

variability would be incomplete then. 
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Another important reason for using this approach of ‘switching off’ the 

factor in question (rather than isolating it) is that the occurring traffic 

congestion is the end result of the combination of all individual 

contributory factors. This combined impact is much larger than the sum 

of all individual impacts, determined by considering the individual 

factors in an isolated way (i.e. as if all other contributory factors did not 

exist). If the individual contributory factors are considered in an isolated 

way, some of these will even be found to have no influence at all, while 

playing a significant role in the combined impact of the different 

contributory factors. This means that the final impact of a contributory 

factor (i.e. its impact on the quality of the traffic conditions) also 

depends on the other contributory factors, even if there are no 

dependencies in occurrence and (demand/supply) effects. 

 

For the same two reasons, the mutual comparison of the influences of 

the six contributory factors mentioned above cannot be based on 

model evaluations in which only these six factors are included. All other 

sources of variability have to be included as well, even though their 

relative contributions will not be studied. Again, incidents and road 

works are omitted, however, for the reason explained in the previous 

section. 

8.6.2 Results 

 

INDICATORS I–V (TRAVEL TIME STATISTICS): 

 

Statistics of the overall travel time distribution: 

 

In the figure below, for each of the statistics of the overall travel t ime 

distribution the ratios are given of its ‘modified values’ (i.e. leaving out 

one of the sources of variability) and its ‘benchmark value’ (i.e. 

accounting for all sources of variability). 

 

The intrinsic randomness in human driving behavior is clearly the most 

important contributor to the congestion problems, followed by the 

traffic demand variation over the months of the year. The other 

considered sources of variation turn out to have a much smaller 

influence. 

 
From the figure it can be seen that the effects on the width and 
skewness of the distributions are the largest. The considered sources of 
variability do not have significant effects on the medians of the travel 
time distributions. This is logically related to the fact that here the 
overall travel time distributions are considered (i.e. of all days of the 
week and times of the day combined). Because of the fact that the 
largest part of the days is congestion free, these medians will always 
relate to congestion free situations as well. As a consequence they will 
not differ much from the free flow travel times, whether a certain 
source of variation is accounted for or not. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.13: The statistics of the 
overall travel time distributions (90th-
percentile, mean, median, width and 
skew), computed for situations in 
which one of the different sources of 
variability is omitted from the model. 
(All values expressed as a ratio to the 
value obtained from the model run 
with full variability.) 
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Statistics of the travel time distributions for specific times of the day: 
 
By way of example, below the results for one of the different categories 
of days (that is, Monday-Thursday) and one specific time of the day 
(17:00 hours) are given. Again, for each of the travel time statistics the 
ratios are given of its ‘modified values’ (i.e. leaving out one of the 
sources of variability) and its ‘benchmark value’ (i.e. accounting for all 
sources of variability). 
 

 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.14: The travel time statistics 
for Mon-Thu – 17:00 (90th-percentile, 
mean, median, width and skew), 
computed for situations in which one 
of the different sources of variability 
is omitted from the model. (All 
values expressed as a ratio to the 
value obtained from the model run 
with full variability.)  
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From this figure more or less the same conclusion can be drawn with 

respect to the relative importance of the different factors as the one 

that was drawn in relation to the overall travel time distributions. That 

is, the intrinsic randomness in driving behavior turns out to be the most 

important contributor to the congestion indicators, followed by the 

demand variation over the months of the year. Apparently, the other 

considered sources of variation do not contribute very substantially to 

the congestion indicators. 

 

There are, however, also some differences to be observed: 

- The intrinsic randomness in driving behavior and especially the 

demand variation over the months generally have a larger 

relative impact on the travel time distributions for this specific 

time of the day, than on the overall travel time distributions, 

which seems logical. 

- The intrinsic randomness in driving behavior does affect the 

medians of the travel time distributions for this specific time of 

the day, while it does not affect the medians of the overall 

travel time distributions. This is logically related to the fact that 

the ‘median traffic situation’ for this specific time of the day 

probably is a congested one, while the overall ‘median traffic 

situation’ is congestion free. 

- For some routes the omission of the modeling of the intrinsic 

randomness in driving behavior is observed to result in a much 

higher skewness value, which means that the existence of this 

randomness actually lowers the skewness of the travel time 

distributions on these routes. This can also be seen from the 

difference between the two diagrams in the figure below. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.15: Computed distribution 
of the travel time on route 2 (for 
Mon-Thu 17:00), which is much less 
skewed if the capacity variation due 
to the intrinsic randomness in driving 
behavior is accounted for in the 
model (lower diagram) than if this 
variation is not accounted for (upper 
diagram) 
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INDICATOR VI (TRAVEL TIME INSTABILITY): 

 

The figure below shows an example of the relative influences on the 

travel time instability. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.16: Example of the effects 
on the travel time instability if given 
sources of variability are omitted 
from the model 
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Also for this indicator the intrinsic randomness in driving behavior 

proves the most important contributory factor. The demand variation 

over the months of the year turns out to have an important role in 

especially the right tail of the travel time instability graph. Apparently, 

the relatively high demands in some of the months may result in very 

sharply rising travel times at this time of the day. 

 

INDICATOR IX (NUMBER OF LOST VEHICLE HOURS): 

 

The figure below shows the relative effects of a number of different 

sources of variability on the number of lost vehicle hours (over a 24-

hours period), as computed for weekdays. Again, the intrinsic 

randomness in human driving behavior is clearly by far the most 

important factor. The demand variation with the month of the year has 

an important influence on the mean number of lost vehicle hours as 

well. 

 

 
 

It might look surprising that the median number of lost vehicle hours is 

found to be larger (instead of lower) if the demand variation over the 

months is omitted from the model. This can probably be explained by 

the fact that the average of the monthly traffic demands (which is used 

as the representative monthly demand in the model) is larger than the 

median of these monthly demand values. 

 

The impact of the intrinsic randomness in people’s travel decisions turns 

out to be negligible compared to the impacts of the other sources of 

variability. At network level, the influence of events proves minor too. 

The relative contributions of the ambient conditions (i.e. weather and 

daylight/darkness) are small as well, though not negligible. 

 

The relative contribution of weather conditions may seem smaller than 

expected. Here it should be considered, however, that the demand 

effects of adverse weather partially compensate for its negative supply 

effects. It should also be noted that the relative influence of weather 

conditions may actually be underestimated here, due to the following: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.17: The relative changes in 
the mean and median numbers of 
lost vehicle hours if a given source of 
variability is omitted from the model 
(as compared with the numbers 
obtained from the model run with 
full variability), for weekdays 
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- As noted in section 8.1, the number of simulations performed 

(350) is way too low to obtain results with reasonable statistical 

accuracy/reliability (meaning that all presented model results 

have to be interpreted with care). By chance, this low number 

of simulations has resulted in the absence of heavy snowfall 

occurrences in the simulation results (while the expected value 

was about 3 occurrences). Since heavy snowfall is one of the 

most detrimental types of weather, its absence in the results 

might lead to a significant underestimation of the relative 

influence of weather conditions.  

- As mentioned in section 8.5, three of the 350 simulations had 

to be excluded from the model output, because of the fact that 

a gridlock occurred. In two of these cases, adverse weather 

conditions were involved (moderate rain and heavy rain, 

respectively). By excluding these simulations, the relative 

influence of weather conditions is underestimated. 

 

The figure below shows the same diagram for weekend days. On these 

days the relative influence of the intrinsic randomness in driving 

behavior appears to be much smaller. Here events seem dominating102. 

Obviously, events have a much larger effect on the mean than on the 

median traffic conditions, due to their limited frequency of occurrence.  

 

 
 

                                                   
102 It should be noted, however, that some extremely high travel times were computed for 

certain event situations (in the order of magnitude of two hours). In reality these probably 

would have been lower, due to the fact that part of the travellers will reconsider their travel 

choices in such situations of heavy traffic congestion (which is not included in the model). As 

a result, in reality the relative importance of the influence factor ‘events’ might be somewhat 

less extreme than indicated in the figure. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.18: The relative changes in 
the mean and median numbers of 
lost vehicle hours if a given source of 
variability is omitted from the model 
(as compared with the numbers 
obtained from the model run with 
full variability), for weekend days 
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8.6.3 Discussion 

In the above, an example has been given of a comparison between the 

relative contributions of different sources of variability to the 

congestion indicators. Although the relative influences of only a part of 

all different sources of variability were considered, and only one specific 

spatiotemporal configuration (with respect to both the network and the 

traffic demand pattern), some general conclusions can already be drawn: 

 

1. The capacity variations due to the intrinsic randomness in 

human driving behavior seem to play a central role in the 

(recurrent) peak period-related traffic congestion, considerably 

increasing both the: 

- mean and median levels of the amount of traffic 

congestion 

- variability of the amount of traffic congestion 

- instability of the traffic conditions (i.e. the extent to 

which one’s realized travel time may deviate from the 

instantaneous travel time at the time of departure) 

Explanations for this large influence may be found in: 

- the considerable size of these variations (for the free 

flow capacity: coefficients of variation ranging from 5 

to 12%, depending on the number of lanes) 

- the fact that the lowest cell capacity value is decisive for 

the capacity of the link (see section 6.2) 

- the fact that these intrinsic capacity variations are 

continuously present, unlike some of the other sources 

of variability 

 

2. The seasonal demand variation over the months of the year 

seems to play a significant role in the peak period-related traffic 

congestion as well. Apparently the relatively high traffic 

demands in some of the months contribute importantly to the 

occurrence of heavy traffic congestion in these months, 

involving very high and unstable travel times. 

 

3. The intrinsic randomness in travel behavior, the ambient 

conditions (weather and daylight/darkness) and events seem to 

play a much smaller role in the peak period-related congestion. 

The influences of events and the intrinsic randomness in travel 

behavior even seem negligible. 

The limited role of events will probably be mainly due to their 

limited frequencies of occurrence and more local nature. The 

limited contribution of darkness can be explained from the fact 

that its capacity effect is relatively small (1.5%).  

To some extent, the relative influence of weather conditions 

might have been underestimated in the presented analysis, as 

explained at the end of the previous subsection. Its limited 
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influence will however also be largely due to the limit frequency 

of occurrence of special weather conditions. Due to this limited 

frequency of occurrence, the consequences of these weather 

conditions will hardly be reflected in indicators I, III, IV and V, 

and only to a limited extent in indicators II (the average travel 

time), VI (the travel time instability) and IX (the total number of 

lost vehicle hours). 

It should be noted, however, that the top 10 most congested 

situations ever (on the Dutch main road network) can all be 

attributed to extremely adverse weather conditions. Such 

situations occur only very occasionally, but their disruptive 

effects on society are huge. Because of this latter, one could 

argue that these extreme situations are insufficiently reflected 

in the performance indicators. This is a direct consequence of 

the deliberate choice to use robust indicators, which are 

relatively insensitive to ‘outliers’ in the simulated data (see 

sections 3.3.2 and 3.4). This choice was made because of the 

facts that: 

- For the same number of simulation runs, values of 

outlier-sensitive indicators have a considerably lower 

statistical accuracy/reliability. Therefore, the use of such 

indicators would make the results of the analyses 

vulnerable to randomness, especially if only a relatively 

small number of simulation runs is performed. 

- The ‘outliers’ are likely to be inaccurate, since extreme 

circumstances will lead to a greater impact of model 

deficiencies. 

Finally, the limited contribution of the intrinsic randomness in 

travel behavior can be attributed to the fact that its impact on 

the traffic volumes on the network is relatively limited. That is, 

the resulting fluctuations are small compared to the average 

traffic volumes, as illustrated by the left figure below. Also, 

these fluctuations are small compared to the random 

fluctuations in the capacities, which can be seen by comparing 

the two figures below. 
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4. Ignoring the influences of incidents and road works, events 

seem to be the most important source of weekend day traffic 

congestion. The relative influence of the capacity variations due 

to the intrinsic randomness in driving behavior is much smaller 

on weekend days. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.19: Random fluctuation of 
the traffic flow in a cell of the 
network, as a result of the intrinsic 
randomness in travel behavior (left), 
and random fluctuation of the free 
flow capacity of a cell of the 
network, as a result of the intrinsic 
randomness in driving behavior 
(right). All other sources of 
variability were excluded in this case, 
except for the (regular) demand 
variation with the time of the day. 
 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2000

4000

6000

8000
Traffic flow on a link

time of the day (hours)

tr
a

ff
ic

 f
lo

w
 (

v
e

h
/h

)

Traffic flow in a cell Free flow capacity of a cell 



 
 
 

 

 

 
 257 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

 

It should be noted here that some caution should be taken regarding 

the first conclusion. As discussed in section 6.2, it is not entirely clear 

yet how the capacity effect of the intrinsic randomness in driving 

behavior can best be modeled. Up to a certain degree, the use of a 

different modeling approach could affect the findings with regard to 

the relative importance of this source of variability. 

 

The above conclusions can be translated into the following implications 

for the selection of strategies to alleviate traffic congestion: 

1. Peak period-related traffic congestion might relatively 

effectively be alleviated by taking measures which reduce the 

effects of the intrinsic randomness in human driving behavior. 

These measures might however not be so easy to find. Results 

of Brilon et al. (2005) indicate that the implementation of traffic 

adaptive variable speed limits might be a measure with the 

desired effect. Also the implementation of Advanced Driver 

Assistance Systems might have the desired effect, insofar as 

these exclude the human factor, by actively taking over 

control103. 

2. Theoretically it would be desirable to strive for a more even 

distribution of the traffic demand over the months of the year. 

This is clearly unfeasible, however, since the variation over the 

months is directly related to seasonal differences in human 

activity patterns and travel choices, which are virtually 

unchangeable. 

3. Aside from potentially yielding large benefits in really extreme 

weather, taking measures directed at mitigating the traffic 

effects of adverse weather seems not a very effective strategy 

to alleviate traffic congestion. 

4. Up to a certain extent, weekend day traffic congestion can be 

avoided by a careful planning of events, including the provision 

of route guidance, adequate parking facilities and appropriate 

alternative transport modes. 

                                                   
103 Note that if such a system allows drivers to make their own settings (based on their own 

driving style), the reduction in the intrinsic capacity randomness will obviously be much 

smaller.     
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8.6.4 Sensitivity to the spatial dependencies in the capacity randomness 

In section 8.5, the model results were subjected to a small sensitivity 

analysis. In this analysis, it was considered to what extent the results 

are sensitive to the modeling assumption on the spatial dependency in 

the part of the capacity variation that is due to the intrinsic randomness 

in driving behavior. This modeling assumption is reflected in the cell 

size chosen for the capacity randomization. In the sensitivity analysis, 

the ‘extreme’ case of the cell size being equal to the link length was 

considered, which means that the capacities were varied at the level of 

links as a whole. This corresponds to the implicit assumption that the 

capacities are fully dependent over the whole length of the link. 

 

For the model results presented above, a similar sensitivity analysis has 

been performed. The results of this analysis are provided in Appendix 

A4.2. These results consist of recalculated versions of the output 

diagrams presented in section 8.6.2 (except for the travel time 

instability diagrams), as obtained by model runs in which the cell -based 

capacity randomization is replaced by a link-based randomization. 

 

From the results it is clear that the conclusions are not really affected by 

the use of the different modeling approach. Of course, the relative 

influence of the intrinsic randomness in human driving behavior is 

considerably smaller if its capacity effect is assumed to be uniform (i.e. 

fully correlated) over the length of a link. Together with the seasonal 

demand variation over the months of the year, it is, however, still the 

most important factor in the peak period-related traffic congestion. 

Again, the other considered sources of variability are found to have a 

much smaller influence. 

 

Note that in the mean, median and 90 th-percentile values of the overall 

travel time distributions, the impacts of the different sources of 

variability are hardly observable in case of this alternative modeling 

approach, as apparent from Figure A4.8. This is obviously due to the 

fact that even in case of full variability (i.e. without any of the sources 

of variability being omitted), these three indicators are already close to 

the free flow travel time, as can be seen in Figure A4.1 (and was 

explained in section 8.5.4). As a result, these indicators will be relatively 

insensitive to the omission of a source of variability, whichever of the 

different sources it is. 
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8.7 Effects of a rush-hour lane 

8.7.1 Introduction 

This section shows that explicitly accounting for the different sources of 

variability can provide us with new insights into the effectiveness of 

specific measures that are proposed to alleviate traffic congestion. For 

this, the example of a rush-hour lane is considered. This rush-hour lane 

is supposed to be proposed for the A13 motorway, on the roadway in 

the northbound direction. It is supposed to extend from the motorway 

junction with the A20 to a location just before the network boundary, 

as illustrated in the figure below. Note that this is just a hypothetical 

scenario, which does not need to be realistic. 
 

 
 

This rush-hour lane is supposed to reduce the following problem: 

In the ‘representative’ morning peak, the capacity of the A13 is 

insufficient to cope with the traffic demands from the A20. As a result, 

traffic jams are created on both branches of this A20, as shown by the 

figure below. An important observation is now that these traffic jams 

do not only consist of traffic wanting to enter the A13 motorway. It 

also consists of through traffic (i.e. traffic that continues its way over 

the A20 motorway), which is blocked by the traffic heading for the 

A13. The result of this is that this through traffic experiences 

‘unnecessary delay’: delay due to a capacity shortage at a bottleneck 

that it does not have to pass. 
 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.20: Location of the 
considered rush-hour lane 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.21: Congestion spillback 
from the A13-bottleneck to both 
branches of the A20 motorway 
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The rush-hour lane will reduce this problem by moving the bottleneck 

to a location further downstream, as illustrated in the figure below. As 

a result, the likelihood of spill-back to the A20 motorway will be 

significantly reduced. 

 

 
 

The (supply) effects of the rush-hour lane are modeled in the way 

described in section 5.4.14. It is important to be aware of the fact that 

in reality, the implementation of this measure might significantly 

change the traffic demand on the motorway network (regarding both 

its total volume, as well as its distribution over time and space), by 

influencing travelers’ choices with respect to: whether or not making a 

trip, destination, mode, route, and departure time. When assessing the 

effectiveness of a measure in the context of a concrete real-life project, 

all these effects would need to be given due consideration. Here it is 

not intended however to make statements on the exact effectiveness of 

this particular rush-hour lane. Rather, the intention is to illustrate that 

there might be differences in the effectiveness according to a 

traditional evaluation (focusing on a ‘representative’ situation) and the 

effectiveness according to an evaluation in which the various sources of 

variability are accounted for. Because of this, it is considered acceptable 

to neglect these demand effects here, for reasons of simplification. 
 

Below, first of all the evaluation according to the more traditional 

approach will be given (focusing on a ‘representative’ situation). After 

that, subsection 8.7.3 describes the outcomes of the evaluation in 

which the various sources of variability are explicitly accounted for, and 

discusses which additional/revised insights these provide (as compared 

with the outcomes of the traditional evaluation). Subsection 8.7.4 

summarizes these new insights, and draws some more general conclusions. 

Finally, subsection 8.7.5 discusses the results of a small sensitivity 

analysis of the results, comparable to the sensitivity analyses discussed 

in sections 8.5.4 and 8.6.4. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.22: New congestion location 
after the realization of the rush-hour 
lane 
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8.7.2 Traditional evaluation 

In the tables and figures below, the effects of the rush-hour lane as 

obtained for the representative situation are shown. Together, these 

effects reflect the effectiveness of the rush-hour lane according to the 

traditional evaluation approach, in which only this representative 

situation is considered. All sources of variability are ignored here, 

except for the systematic demand variation with the time of the day.  

 

Before turning to its effects, the figure below first of all shows the 

(traffic responsive) dynamic behavior of the rush-hour lane in the 

representative situation. Note that the rush-hour lane consists of three 

consecutive sections, corresponding to different links of the network 104. 

These different sections may be opened or closed independently from 

each another. From the figure it can be observed that the second and 

third sections are opened during the peak periods only, while the first 

section is opened during the whole of the daytime period. The dynamic 

lane considered here is thus not a rush-hour lane in its most restricted 

sense. 
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INDICATORS I–V (TRAVEL TIME STATISTICS): 

 

Statistics of the overall travel time distribution: 
 

The table below shows the statistics of the (representative) overall 

travel time distributions for the scenario with the rush-hour lane. Values 

that deviate from those obtained for the base scenario without the 

rush-hour lane (see section 8.4) are explicitly marked. For the purpose 

of comparison, the original value (for the base scenario) is given as well 

in such cases (between brackets). 

                                                   
104 Please note that the curves in the figure are overlapping to some extent.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.23: Dynamic opening of the 
rush-hour lane in the representative 
situation 
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Route 
 

Indicator 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

I.   TT_90 1,15 1,19 1,10 1,11 (1,10) 1,10 (1,11) 1,11 

II.  TT_mean 1,11 1,08 1,05 1,06 (1,05) 1,04 (1,05) 1,04 (1.05) 

III. TT_median 1,07 1,08 1,05 1,05 1,05 1,05 

IV. TT_width 0,15 0,19 0,10 (0.09) 0,11 (0.10) 0,10 0,10 (0.11) 

V.  TT_skew 1,10 1,54 0,85 (0.84) 1,32 (1,02) 1,05 (1,14) 1,12 (1,17) 

Note: all values of indicators I-IV are made dimensionless by division by the free flow 

travel time. Indicator V is already dimensionless by itself . 

 

As apparent from the table, the effects on the overall travel time 

distributions are relatively limited. This is in fact rather logical, since:  

- The overall travel time distributions relate to the whole of the 

day, while the problem existed only during the morning peak. 

- The travel time distributions relate to entire routes, while the 

problem existed only locally. 

From the table it can be seen that the ‘A20 routes’ (route numbers 5 

and 6) benefit from the presence of the rush-hour lane (as expected), 

while the directly affected route (i.e. the route over the road stretch 

with the rush-hour lane, corresponding to number 4) suffers from its 

presence. This latter can be explained by the facts that: 

- The rush-hour lane does nothing more than moving the A13 

bottleneck to a location further downstream, implying that the 

A13 road users will still face more or less the same amount of 

congestion. 

- During the periods in which the rush-hour lane is open to 

traffic, the speed limit on the road stretch concerned is reduced 

to 80 km/h 105 (for safety reasons), which increases the travel 

time. 

The rush-hour lane appears to have a (very small) negative influence on 

the overall travel time distribution of route 3 (the north-south route 

from the A13 to the A16) as well. This can probably be attributed to 

the fact that the traffic congestion on the A20 (which disappears after 

the implementation of the rush-hour lane) has a favorable effect on the 

traffic conditions on some road stretches that are part of this route, by 

delaying some of the traffic that is on its way to these road stretches. 

 

Statistics of the travel time distributions for specific times of the day: 

Obviously, the travel time statistics for specific times of the day are not 

defined for the representative situation, due to the fact that they refer 

to a variability which is not modeled in this case. Instead, only the 

representative travel time patterns over the day can be given. These are 

shown in the figures below. The travel time improvement on route 5 

can clearly be observed. The improvement on route 6 is smaller, 

however. On route 4 the travel time clearly deteriorates, which is due 

                                                   
105 Note that this applies to only a part of this road stretch. On the other part the speed limit is 

80 km/h already, because it is located within an 80 km/h zone. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 8.3: Representative values of 
the statistics of the overall travel 
time distributions for the scenario 
with the rush-hour lane 
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to the speed limit reduction during the periods in which the rush-hour 

lane is opened (as discussed above). The travel time graphs of the other 

routes do not show significant changes and are therefore omitted here.  
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INDICATOR VI (TRAVEL TIME INSTABILITY): 

 

The table below shows the travel time instability values for the scenario 

with the rush-hour lane. Note that these travel time instabilities cannot 

be given as distributions in this representative evaluation, but only as 

deterministic values. Values that deviate from those obtained for the 

base scenario without the rush-hour lane (see section 8.4) are explicitly 

marked. For the purpose of comparison, the original value (for the base 

scenario) is given as well in such cases (between brackets). 

 

Also in terms of travel time instability, the ‘A20 routes’ (route numbers 

5 and 6) benefit from the presence of the rush-hour lane (as expected), 

while the directly affected route (i.e. the route over the road stretch 

with the rush-hour lane, corresponding to number 4) suffers from its 

presence. 
 

Route 
 

Time of the day 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

03:00 0,00 0,00 0,00 0,00 0,00 0,00 

07:00 0,01 0,01 0,01 0,03 (0.01) 0,01 0,01 

08:00 0,00 0,01 0,00 0,05 (0.03) 0,00 ( 0.04) 0,00 (0.02) 

09:00 -0,01 -0,04 -0,01 (0.00) -0,06 (-0.04) -0,01 (-0.08) 0,00 

13:00 0,00 0,00 0,00 0,00 0,00 0,00 

16:00 0,01 0,01 0,00 0,00 0,01 0,01 

17:00 0,08 0,03 0,00 0,00 0,00 0,00 

18:00 0,00 -0,04 0,00 0,00 (-0.01) -0,01 0,00 

21:00 0,00 0,00 0,00 0,00 0,00 0,00 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.24: Effects of the rush-hour 
lane on the representative travel time 
patterns over the day 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 8.4: Representative values of 
the travel time instability for the 
scenario with the rush-hour lane 
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INDICATOR IX (NUMBER OF LOST VEHICLE HOURS): 

 

The figure below shows the reduction in the total number of lost 

vehicle hours on the network (over the 24-hours period). This reduction 

is obviously limited, due to the fact that the rush-hour lane only 

reduces the congestion that is related to the A13 bottleneck. Other 

congestion problems in the network are not alleviated. 

 

 
 

8.7.3 Evaluation of the effectiveness in the variable situation 

This section discusses the effectiveness of the rush-hour lane as found 

by performing an evaluation in which the various sources of variability 

are explicitly accounted for. It should however be noted that two 

sources of variability have been omitted from this evaluation, namely 

road works and incidents. This is for the same reason as described in 

section 8.5.  

 

INDICATORS I–V (TRAVEL TIME STATISTICS): 

 

Statistics of the overall travel time distribution: 

 

The table below shows the statistics of the overall travel time 

distributions for the scenario with the rush-hour lane.  

 

Route 
 

Indicator 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

I.   TT_90 2,41 2,21 1,22 1,90 1,23 1,13 

II.  TT_mean 1,42 1,29 1,11 1,25 1,14 1,18 

III. TT_median 1,06 1,06 1,05 1,04 1,05 1,05 

IV. TT_width 1,41 1,20 0,22 0,90 0,23 0,13 

V.  TT_skew 22,39 19,16 3,63 21,02 4,13 1,96 

Note: all values of indicators I-IV are made dimensionless by division by the free flow 

travel time. Indicator V is already dimensionless by itself . 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.25: Effect of the rush-hour 
lane on the total number of lost 
vehicle hours in the representative 
situation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 8.5: Statistics of the overall 
travel time distributions for the 
scenario with the rush-hour lane 
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In the figure below, these indicator values are compared with the 

corresponding values for the base scenario (i.e. the situation without 

the rush-hour lane). 

 

 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.26: The statistics of the 
overall travel time distributions (90th-
percentile, mean, median, width and 
skew) in the situation with the rush-
hour lane, compared with those in 
the situation without this lane 
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The effects according to the above figure are clearly different from 

those found in the evaluation according to the traditional approach (see 

section 8.7.2): 

- The positive effects on the travel time distribution of route 5 

(i.e. the eastbound A20-route) turn out to be much larger than 

indicated by the results of the traditional evaluation. The 90th 

percentile travel time even decreases by nearly 40%. 

- The positive effects on the travel time distribution of route 6 

(i.e. the westbound A20-route) are found to be larger as well. 

- While the traditional evaluation predicted that the directly 

affected route (i.e. the A13-route over the roadway with the 

rush-hour lane, corresponding to number 4) would suffer from 

the presence of the rush-hour lane, here it is found that rather a 

(limited) improvement of the travel time statistics of this route 

is to be expected. 

- While in the traditional evaluation no effect was found on the 

travel time distribution of route 2, here a significant 

improvement is found. This is due to the fact that in the base 

scenario the congestion generated by the A13-bottleneck often 

spills back all the way to the A15 motorway, which increases 

the travel time on route 2. By solving the bottleneck at the start 

of the A13, the rush-hour lane might prevent this spillback from 

occuring, thereby improving the travel time distribution of route 

2. Since this spillback to the A15 does not occur in the 

‘representative’ situation, this potential benefit of the rush-hour 

lane is not noticed in the evaluation according to the traditional 

approach. 

- While in the traditional evaluation no effect was found on the 

travel time distribution of route 1, here its 90 th pecentile value  

is found to increase. A possible explanation for this might be 

that the A13-related congestion sometimes has as a favorable 

effect on the traffic conditions on certain road stretches that are 

part of this route, by blocking/delaying traffic that is on its way 

to these road stretches. If the A13-related congestion is 

alleviated by the rush-hour lane, this favorable effect 

disappears. 

 

Statistics of the travel time distributions for specific times of the day:  

 

For certain times of the day very large improvements in the travel time 

statistics for route 4, 5 and 6 (i.e. the A13-route with the rush-hour 

lane, and both A20-routes) are found. This is illustrated by the figure 

below, which shows the computed changes in the travel time statistics 

for 8 am. Both the mean/median travel time and the travel time 

variability turn out to decrease on these routes. The calculated 

improvements in the mean/median travel time are much larger than the 

improvements in the representative travel time, as calculated in the 

evaluation according to the traditional approach. Remember that for 

route 4 even a (slight) deterioration was calculated for the 

representative situation. 
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For routes 4, 5 and 6, similar improvements are found for 9am as for 

8am, as apparent from the figure below. This is a difference with the 

results for the representative situation, in which the improvements are 

limited to a period before 9am only (see section 8.7.2). 

 

Even more remarkable is that significant improvements are found for 

routes 1 and 2 (the A15-routes) as well, while the traditional evaluation 

suggested that the conditions on these routes would be unaffected by 

the rush-hour lane. Closer examination reveals that these results are 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.27: The travel time statistics 
for Mon-Thu – 08:00 (90th-percentile, 
mean, median, width and skew), in 
the situation with the rush-hour lane, 
compared with those in the situation 
without this lane 
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not contradictory, however. To see this, note that hardly any change is 

found in the median travel times. This is in good agreement with the 

fact that no effect is observed in the representative situation. In the 

assessment according to the traditional approach it remains unnoticed 

however that the A13-related congestion in part of the occasions is 

much heavier than in other occasions. In such situations this congestion 

spills back all the way to the A15 motorway (where it apparently arrives 

between 8 and 9 am), causing significant delays over there. The rush-

hour lane reduces this congestion spillback. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.28: The travel time statistics 
for Mon-Thu – 09:00 (90th-percentile, 
mean, median, width and skew), in 
the situation with the rush-hour lane, 
compared with those in the situation 
without this lane 
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For the daytime off-peak period improvements in the 90 th percentile 

and mean travel times are found as well (for routes 1, 2, 4 and 5). It is 

questionable to which extent this is realistic, however. At least part of 

the off-peak congestion concerned here is congestion originating from 

the morning peak, which dissolves much too late. This is related to the 

problem that the model generates too much traffic congestion in many 

of the simulation runs, as discussed in section 7.5.1. Obviously, this 

problem will affect the results for other times of the day as well. 

Therefore, not too much value should be attached to the exact 

quantitative values of the outcomes. 

 

For the evening peak the effects of the rush-hour lane are found to be 

much smaller, which is in reasonable agreement with the results of the 

evaluation according to the traditional approach (see section 8.7.2). It 

is however not true that there are no effects on the evening peak 

conditions at all, as this traditional evaluation suggests. For route 5 

(i.e. the eastbound A20 route) a significant improvement is found, not 

only in the 90th percentile and mean, but even in the median travel 

time. 

 

For Fridays more or less the same effects are observed as for the other 

weekdays. The positive impact on route 1 and 2 at the end of the 

morning peak is smaller (or in case of route 1 even absent), however. 

This can be explained by the fact that the situation on Friday is better 

anyhow (i.e. not considering the rush-hour lane yet). Due to its lower 

morning peak traffic demand, less congestion spillback occurs from the 

A13 bottleneck. As a result, there is less room for improvement on this 

day. 

 

For weekend days no significant effects are found. This is obviously 

related to the fact that the rush-hour lane is specifically aimed at 

solving a specific weekday congestion problem, which does not exist on 

weekend days. 

 

INDICATOR VI (TRAVEL TIME INSTABILITY): 

 

Due to the removal of the bottleneck at the start of the A13, the 

morning peak travel time instability on both A20 routes (route numbers 

5 and 6) is significantly reduced (both in terms of the average travel 

time change and the uncertainty in this change). This is shown in the 

figures below. In absolute terms, the improvements of the averages are 

larger than the improvements of the corresponding instability values for 

the representative situation (see section 8.7.2). 
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For route 5 not only the morning peak travel time instability is reduced, 

but the evening peak travel time instability as well, as shown below. 

This improvement was missed by the evaluation according to the 

traditional approach (section 8.7.2). 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.29: The effect on the travel 
time instability on route 5, for 08:00 
(weekdays only) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.30: The effect on the travel 
time instability on route 5, for 09:00 
(weekdays only) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.31: The effect on the travel 
time instability on route 6, for 09:00 
(weekdays only) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.32: The effect on the travel 
time instability on route 5, for 17:00 
(weekdays only) 
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On the route with the rush-hour lane itself (i.e. the northbound A13 

route, corresponding to route number 4), the morning peak travel time 

instability is reduced as well, as apparent from the figures below. Since 

the evaluation according to the traditional approach showed a 

worsening instead of an improvement, this evaluation clearly gave a 

false impression of the effect on the travel time instability on this route. 
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Finally, a reduction in travel time instability is found on route 2, at the 

end of the morning peak (as shown in the figure below). On some 

days, spillback from the A13 bottleneck resulted in sudden sharp 

increases in travel time here. By removing this bottleneck, the rush-

hour lane can prevent this phenomenon from occurring. In the 

evaluation according to the traditional approach, this potential benefit 

of the rush-hour lane remains unnoticed. 
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Figure 8.33: The effect on the travel 
time instability on route 4, for 08:00 
(weekdays only) 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.34: The effect on the travel 
time instability on route 4, for 09:00 
(weekdays only) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.35: The effect on the travel 
time instability on route 2, for 09:00 
(weekdays only) 
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INDICATOR IX (NUMBER OF LOST VEHICLE HOURS): 

 

The figures below show the reductions in the total amount of lost 

vehicle hours on the network, separately for weekdays and weekend 

days. Clearly, on weekdays the reduction is much larger than found in 

the evaluation according to the traditional approach (focusing on the 

representative situation – see section 8.7.2), both in absolute and 

relative terms. This means that the ‘representative’ evaluation results in 

a significant underestimation of the benefits of the rush-hour lane. 

 

For weekend days, the reduction is found to be much smaller (both in 

absolute and in relative terms). This is much less important, however, 

since the volume of traffic congestion on weekend days is relatively 

small. Probably, the small reduction on weekend days will be due to the 

fact that the A13-bottleneck is not often active on these days (as 

opposed to the situation on weekdays). In section 8.6 it was found that 

most of the congestion on weekend days is related to events. 

Obviously, the traffic generated by these events might cause 

congestion at other locations in the network than the weekday peak 

period traffic. 
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Figure 8.36: The mean and median 
numbers of lost vehicle hours on 
weekdays in the situation with the 
rush-hour lane, compared with those 
in the situation without this lane 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.37: The mean and median 
numbers of lost vehicle hours on 
weekend days in the situation with 
the rush-hour lane, compared with 
those in the situation without this 
lane 
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8.7.4 Discussion 

Clearly, the evaluation in which the various sources of variability were 

explicitly accounted for provided us with extra insights into the 

effectiveness of the considered rush-hour lane, which were not 

obtained from the evaluation according to the more traditional 

approach (focusing on the ‘representative’ situation). Furthermore, it 

turned out that some of the findings obtained for the ‘representative’ 

situation actually did not give a good impression of the typical effects 

of the rush-hour lane. That is, the effects calculated for the 

‘representative’ situation prove not always that representative 

themselves. 

 

An overview of the additional and revised insights obtained by explicitly 

accounting for the various sources of variability (as compared with 

those obtained by an evaluation according to the more traditional 

approach) is given below. 

 

Additional/revised insights into the effects of the rush-hour lane: 

- The positive effects on the travel times on the A20 routes are 

much larger than apparent from the results of the evaluation 

according to the traditional approach. (Even if one considers the 

median travel times.) 

This seems closely related to the fact that the ‘representative’  

calculation underestimates the amount of traffic congestion (see 

section 8.5). Obviously, this results in the potential benefits of 

measures being underestimated as well. 

- The travel time statistics and travel time stability on the directly 

affected route (i.e. the A13-route over the roadway with the 

rush-hour lane) will improve, while the evaluation according to 

the traditional approach predicted a (slight) deterioration of the 

travel times and travel time stability. 

- The morning peak travel time instability on routes 4, 5 and 6 is 

significantly reduced. The reductions in the average instability 

values are larger than the reductions in the corresponding 

representative values. Also the day-to-day variability in the 

instability values is signifcantly reduced. This is not noticed in 

the evaluation according to the traditional approach, since this 

day-to-day variability is not considered in such an evaluation. 

- The positive impact on the conditions on route 5 is not limited 

to the morning peak period (as indicated by the results of the 

evaluation according to the traditional approach), but is 

associated with the evening peak period as well (although to a 

more limited extent). 

- The 90th percentile and mean travel times on route 1 and 2 for 

the end of the morning peak will significantly improve (on 

Monday-Thursday), while the representative calculation did not 

show any effects at all. The same applies to the travel time 

stability on route 2. 
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In the representative calculation this potential benefit of the 

rush-hour lane was ‘overlooked’, due to the fact that the 

regularly occurring spillback to the A15 does not occur in the 

‘representative’ situation. 

- On routes 4, 5 and 6 the day-to-day variability in the morning 

peak period travel times is greatly reduced. 

This aspect is not noticed in the evaluation according to the 

traditional approach, since this day-to-day variability is not 

considered in such an evaluation. 

- At network level the reduction in the total amount of lost 

vehicle hours is much larger than calculated for the 

representative situation. This does not only apply to the mean, 

but to the median value as well. 

This seems closely related again to the fact that the 

‘representative’ calculation underestimates the amount of traffic 

congestion, as mentioned above. 

- For weekend days significant effects are not to be expected. 

 

These observations can be translated into the following conclusions of 

a more general nature: 

1. Due to the fact that a ‘representative’ calculation (i.e. based on the 

representative values of the demand and supply characteristics) 

underestimates the traffic congestion in certain respects (see 

section 8.5.3), it underestimates the beneficial effects of 

proposed measures (aimed at alleviating this congestion) as 

well. In section 8.5.3 it was discussed that this deficiency will not 

be satisfactorily remedied by calibrating the representative 

calculation to the ‘representative’ congestion level. 

2. In an evaluation according to the traditional approach, potential 

benefits of a traffic measure may remain unnoticed due to 

trend breaks in the behavior of the traffic system. This applies 

particularly to (the avoidance of) spillback of congestion to 

other network elements. If this spillback occurs only in part of 

the occasions (say less than 50%), it will not be included in the 

representative analyses. Consequently, the benefits achieved on 

these other network elements will not be reflected in the 

evaluation results. 

3. In an evaluation according to the traditional approach, no 

information is obtained on the improvements in travel time 

uncertainty (due to the fact that the day-to-day variability in 

the traffic conditions is not considered), while this improvement 

might be an important component in the benefits of a traffic 

measure. 

 

These conclusions imply that more systematic attention should be given 

to the inherent variability in traffic congestion, when evaluating the 

effectiveness of measures that are proposed to alleviate traffic 

congestion. Because of the complexity involved (especially in case of 

heavily loaded networks in highly urbanized areas), this would have to 
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be done by using a model in which the different sources of variability 

are explicitly accounted for, such as the model developed in this 

project. In the final section of this chapter (section 8.8), it is discussed 

whether/how this model could be used for this purpose. 

8.7.5 Sensitivity to the spatial dependencies in the capacity randomness 

In sections 8.5 and 8.6, the model results were subjected to a small 

sensitivity analysis with respect to an important model uncertainty. In 

this analysis, it was considered to what extent the results are sensitive 

to the cell size chosen for the capacity randomization. Implicitly, 

choosing a certain cell size corresponds to assuming a certain degree of 

spatial dependency in the random capacity variation (i.e. the part of the 

capacity variation that is due to the intrinsic randomness in human 

driving behavior). In the sensitivity analysis, the ‘extreme’ case of the 

cell size being equal to the link length was considered, which means 

that the capacities were varied at the level of links as a whole. This 

corresponds to the implicit assumption that the capacities are fully 

dependent over the whole length of the link. 

 

For the computed effects of the rush-hour lane, a similar sensitivity 

analysis has been performed. The results of this analysis are provided in 

Appendix A4.3. These results consist of recalculated versions of the 

output diagrams presented in subsection 8.7.3, as obtained by a model 

run in which the cell-based capacity randomization is replaced by a 

link-based randomization. 

 

From the results it is clear that the conclusions are not really affected by 

the use of the different modeling approach. In absolute terms, the 

calculated improvements are generally smaller now, but in relative 

terms sometimes larger. The most important observation, however, is 

that the calculated improvements are still much larger and more 

comprehensive (in terms of both time and space) than those found in 

the evaluation according to the traditional approach. 

 

Note that this is not the case for the improvements in the mean, 

median and 90th-percentile values of the overall travel time 

distributions (i.e. the distributions related to the combination of all 

times of day and days of week). In these statistics (Figure A4.12), the 

effects of the rush-hour lane are hardly noticeable, which is in good 

agreement with the findings obtained in the evaluation according to 

the traditional approach (Table 8.3). The cause of this (almost) 

negligible impact is obvious. Due to the fact that the traffic conditions 

are free of congestion during the main part of the time, the values of 

these three indicators are in the base scenario already close to the free 

flow travel times (meaning that they are not very significantly affected 

by congestion). Consequently, there is little room for improvement in 

these values. 

 

  

 



 
 
 

 

 

 
 276 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

8.8 Use of the developed model for real-life evaluations 

8.8.1 Introduction 

In this section it is discussed whether/how the developed model could 

be used for practical application within the context of real-life 

evaluations of measures proposed to alleviate traffic congestion. It 

should be stressed, however, that this model was developed solely for 

the research task considered in this project (i.e. illustrating the gain of 

additional insights), and thus not directly for practical application in the 

evaluation of concrete projects. 

 

When considering the model’s suitability for practical application in 

such evaluations, two aspects are of central importance: 

- its validity for this task 

- the required computation time 

These two aspects are discussed in subsections 8.8.2 and 8.8.3, 

respectively. 

 

First of all, however, let us note that section 8.6 showed that the model 

can be simplified for practical application, as far as the considered 

sources of variability are concerned. After all, some of the sources of 

variation appeared negligible compared to others, which implies that 

these can be ignored in practical studies. This for example seems the 

case for the intrinsic randomness in the demands and – as far as the 

(recurrent) peak period-related congestion is considered – the demand 

variations due to events. Note however that the example presented in 

section 8.6 clearly provides insufficient basis for definite conclusions on 

this, since the relative influences of only a part of all different sources 

of variability have been considered here, and only for one specific 

spatiotemporal configuration (with respect to both the network and the 

traffic demand pattern). Much additional analysis would be needed for 

this. 

8.8.2 Validity for real-life evaluations 

Recall from chapter 7 that different levels of model validity can be 

distinguished, the lowest of which is face validity. In the same chapter 

it was discussed that the developed model is largely face valid for the 

research tasks considered in this thesis, albeit with some deficiencies 

(which cannot easily be remedied). In case of a practical application for 

the evaluation of concrete projects, these deficiencies weigh more 

heavily (resulting in a lower face validity), however. This is because of 

the fact that in this case we are interested in the quantitative values of 

the effects, rather than merely in a qualitative illustration of the new 

insights obtained. Furthermore, an additional deficiency becomes 

relevant in this case. This concerns the fact that the route choices in the 

model are currently based on the shortest paths according to the free 

flow travel times. In particular for the peak periods, this is clearly 

unrealistic. For the research tasks considered in this project, this 

deficiency is not considered very important. In practical applications, it 

will be relevant however. 
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Of course, the deficiencies will lead to errors in both the results for the 

base scenario and the results for the scenario with the considered 

measure. As a result, these errors will partially cancel each other out. It 

is clear, however, that the results for the two scenarios will not be 

affected equally. This means that the deficiencies will lead to errors in 

the calculated effects of the measure. 

 

In chapter 7 it was also discussed that for the research tasks at hand, 

construct validity is relatively easily achieved, because of the fact that 

all inputs and model parameters can be given any value within their 

‘realistic range’. In case of a practical application of the model, this is 

obviously not the case. In this situation, the model should be tailored to 

the specific situation at hand, which necessitates a proper calibration.  In 

section 7.3 it was argued, however, that the feasibility of such a 

calibration is rather doubtful. The only way to ‘tune’ the model’s 

parameter settings to a practical situation is then by conducting 

location-specific empirical research on the different influence factors to 

which the parameters relate. However, this will clearly be too time-

consuming for a practical study. Moreover, a really good end result (in 

terms of construct/predictive validity
106

) is of course still not to be 

expected then. 

 

In view of the above, it can be concluded that in practical applications, 

the model can only be used in a qualitative way, to find out whether 

certain effects (i.e. benefits or detriments) of a measure may be 

overlooked (or considerably underestimated) in the evaluation 

according to the traditional approach. It will not be possible to find the 

detailed quantitative values of these effects, because of a lack of 

sufficient model validity for this purpose. 

8.8.3 Required computation time 

For practical application of the model in evaluations of concrete 

projects, it is obviously strongly desirable that the required computation 

time is limited. This is currently not the case, however. In section 6.6.1 

it was explained that the required computation time is in the order of 

multiple days or weeks, which is due to the large number of simulation 

runs required. Because of this, it is desirable to look for ways to reduce 

this computation time. 

 

There are three ways to achieve such a reduction: 

- by using faster computers (or multiple computers in parallel), 

- by lowering the number of simulation runs performed, or 

- by increasing the speed of the developed model (reducing the 

amount of computation time required per individual simulation 

run). 

 

                                                   
106  Note that if a model is not calibrated to empirical data, the distinction between the 

construct and predictive validity of this model is not relevant. 
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The first strategy speaks for itself and consequently needs no further 

explanation. Possible ways to reduce the required number of simulation 

runs have been considered in section 6.6 (i.e. by implementing more 

efficient sampling techniques). It is important to note that the required 

number of simulation runs cannot be reduced by simplifying the model. 

For given performance indicators and a given requirement with respect 

to the statistical accuracy that is to be achieved, this number is directly 

governed by the statistical properties of the traffic conditions. 

 

An important remark is to be made, however, with respect to the level 

of statistical accuracy that one requires. In view of the model’s limited 

validity for practical applications (which limits its use to making 

qualitative observations), it obviously does not make sense to compute 

the considered performance indicators with a very high statistical 

accuracy. For increasing statistical accuracy, any further improvements 

of this statistical accuracy will gradually become more and more 

negligible compared to the inaccuracies that are due to deficiencies in 

the model itself, resulting in the overall accuracy of the model outputs 

hardly improving anymore. This means that a considerable amount of 

computation time can be saved by avoiding performing a senseless 

large number of simulation runs. 

 

Finally, a reduction of the amount of computation time can be sought 

in the simulation speed of the model. Obviously, this involves a 

tradeoff between computation time and model accuracy. Currently, one 

simulation takes about 1.9 minutes (on a computer with a 2 GHz 

processor). The figure below shows the approximate distribution of this 

computation time over the different model components.  

 

 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure 8.38: Distribution of the 
computation time of one simulation 
over the different model components 
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Clearly, the largest part of the computation time is consumed by the 

dynamic traffic simulator. Still, this simulator should be regarded as 

being rather fast, considering that it needs only slightly more than one 

minute to simulate the traffic operations 

- on a reasonably sized network, 

- over the period of a whole day, 

- with physical queuing (based on a discretization of the 

kinematic wave equations), 

- with a time step of 5 seconds and a (corresponding) cell length 

of 167 m or smaller (depending on the speed limit of the link), 

- with a destination-specific modeling of the traffic propagation 

over the network, and 

- with a simultaneous tracking of some output indicators (i.e. 

numbers of lost vehicle hours and realized travel times).  

 

Increasing the speed of the computational core (the traffic simulator) 

 

In order to increase the speed of the traffic simulator, one or more of 

these features would have to be given up. Obviously, we cannot give 

up considering a reasonably sized network. The network needs to be 

sufficiently large to include the network effects of traffic congestion 

(i.e. blocking back effects and the temporal redistribution effect 107), and 

to limit the relative influence of the network boundaries. Of course, the 

tracking of certain output indicators during the simulation cannot be 

given up either. 

 

If we are only interested in (the effects on) the peak period related 

traffic congestion, the computation time can be limited by simulating 

only the peak periods of the day. Obviously, important information 

with respect to off-peak period traffic congestion might be missed in 

this case. Furthermore, the calculation of the indicators relating to the 

overall travel time distributions is not possible then. 

 

Theoretically, the required simulation time may significantly be reduced 

by using a dynamic traffic simulator without physical queuing. In this 

case, JDSMART would be replaced by a simulator with a non-physical 

queuing mechanism, like vertical queuing, horizontal queuing, or traffic 

propagation via travel time functions. Such simulators are typically 

much less computationally intensive than cell transmission models such 

as JDSMART. However, the modeling of blocking back effects is not 

accurate then, or even absent. In view of the very important role that 

these blocking back effects can have in the benefits of traffic measures 

(which may prevent these blocking back effects from occurring), the 

replacement of JDSMART by such a simulator with non-physical queue 

modeling is not advisable. 

 

                                                   
107 See section 2.3 for a description of these network effects. Note that the route choice effect 

of traffic congestion is not taken into account in the developed model.  
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Given the model’s limited validity for practical applications (which limits 

its use to making qualitative observations), it is acceptable to allow 

some inaccuracy (including some numerical diffusion) in the traffic flow 

modeling due to a relatively rough discretization. If the time step and 

cell lengths would be doubled (resulting in a new time step of 10 

seconds and cell lengths of maximal 333 m), the required simulation 

time can be expected to decrease with a factor of approximately 4 (= 

22). It is advisable, however, to perform some tests to find out whether 

this indeed is still acceptable. 

 

The destination-specific modeling of the traffic propagation over the 

network was considered important in order to be able to: 

- include the demand effects of events in the model (which are 

limited to specific origin-destination relations only), 

- properly model the influence of the intrinsic randomness in the 

origin-destination traffic demands, and 

- include the effect that the aggregated turn fractions at the 

network nodes may be affected by traffic congestion in 

upstream parts of the network. 

 

In view of the fact that the results of section 8.6 suggest that the 

importance of the demand effects of events and the intrinsic 

randomness in travel behavior is only limited, it might be considered to 

abandon this destination-specific modeling. It is not clear, however, to 

what extent the congestion-related variation in the aggregated turn 

fractions is important. Before deciding whether or not to give up the 

destination-specific aspect of the traffic flow modeling, this would have 

to be studied first. 

 

It should be noted, however, that in JDSMART the abandoning of the 

destination-specific traffic modeling will not yield such a large reduction 

in simulation time as in other simulators. This is due to the fact that 

JDSMART deals with this ‘multi-class’ aspect of the traffic in a more 

efficient way than other multi-class models, as discussed in section 

5.2.1. However, if this multi-class aspect (which was one of the reasons 

for selecting JDSMART – see section 5.2.1) would be given up, it could 

also be considered whether it would be feasible to replace JDSMART by 

the (single-class) simulator ‘Flowsim-Live’. This simulator is an ‘online’ 

version of the earlier mentioned model ‘Flowsimulator’ (Kijk in de 

Vegte & Van Toorenburg, 2009). This online version uses the 

computing power of the graphics card of the computer, which increases 

its speed by a factor of 30. This would obviously be very beneficial to 

the practical applicability of the model. Just like JDSMART, this 

simulator is a cell transmission model (with physical queuing), resulting 

in an accurate modeling of spillback effects.  
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It should be noted, however, that rather than abandoning the multi-

class feature of JDSMART, it would actually be desirable to expand this 

concept even further, by distinguishing traffic flows not simply by 

destination, but rather by route, in order to be able to: 

- properly model the (regular) variations in route choice with the 

time of the day, and 

- enhance the model with a feedback mechanism from the 

(actual) traffic conditions to the route choices.  

Obviously, this desire is incompatible with the need to reduce the 

computation time. 

 

Increasing the speed of the other model components 

 

Figure 8.38 showed that the largest part of the computation time is 

consumed by the dynamic traffic simulator. This certainly does not 

mean, however, that the computation time of the other model 

components is insignificant. Together, these account for more than one 

third of the total computation time. This means that if the total 

computation time is to be reduced really drastically, their computation 

time will have to be reduced as well. 

 

From Figure 8.38 it can be seen that the ‘central component’ of the 

model (which manages all other components) is clearly the largest 

contributor to the computation time of these other model components. 

More than 60% of its computation time is spent on the updating of the 

demand and supply variables during the simulation process (based on 

the tables generated by the demand and supply randomizers).  

 

The most effective way to reduce this updating time is by using a larger 

time interval for the randomization. In order for the variations in the 

traffic conditions to be properly reflected in the model output, it is 

important to choose this time interval sufficiently small compared to the 

time scales of the sources of variation. It is hypothesized that for this a 

time interval in the range of 5 to 15 minutes is required. In this project 

a safe value of 5 minutes has been chosen. It could be considered, 

however, to use a 10 or 15 minute interval, in order to reduce the 

computation time. Of course, this modification would have to be 

preceded by testing the output´s sensitivity to different time intervals. 

Note that the problem discussed in section 6.3 (i.e. the partial mismatch 

between the demands and the capacity realizations) will increase if the 

time interval of the randomization is increased.  

 

The use of a larger randomization interval will not only reduce the 

computation time of the central component of the model. Obviously, 

the computation time of the demand and supply randomizers will be 

reduced as well, since less randomized values are to be generated in 

this case. The same applies to the computation time of the incident 

simulator. 
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Another way to reduce the updating time is by varying the supply 

parameters at the level of links, rather than at the level of the 

individual cells of the links. This strategy is however estimated to be 

less effective than the use of larger randomization time intervals.  This is 

due to the fact that in the MATLAB code of the central component, the 

updating procedure is invoked at the link level already. The updating 

procedure itself (which considers the individual cells of the link in 

question) is implemented in the Java code of the traffic simulator, 

resulting in a relatively low computational cost. 

 

Furthermore, this transition to a link-based variation approach will not 

yield a substantial reduction in the computation time of the supply 

randomizer, as the change of the randomization time interval does. This 

is due to the fact that the cell-based aspect accounts for only a few 

percent of the total computation time of the supply randomizer.  

 

For the incident simulator, this is different. Almost 90% of its 

computation time is spent on the random generation of incidents per 

cell of the network. Therefore, a significant reduction in computation 

time could be achieved by generating these incidents at the level of 

links, rather than at the level of cells. As a second step,  then, the 

generated incidents might be randomly assigned to one of the cells of 

the link in question. The implicit simplifying assumptions associated 

with this approach seem acceptable. 

 

It should be noted that the computation time cannot be substantially 

reduced by omitting one or more of the sources of variability. By far, 

incidents and the intrinsic randomness in driving behavior are the 

sources of variability that are the most computationally expensive 108. In 

view of the fact that the intrinsic randomness in driving behavior was 

observed to play a very important role in the performance of the traf fic 

system (see section 8.6), this source of variability clearly cannot be 

omitted from the model. Although incidents have not been included in 

the model evaluations presented in the previous sections (because of a 

problem with respect to the computed congestion levels, as discussed in 

section 8.5), these are expected to play an important role as well. 

Therefore, these in fact should not be omitted from the model either. 

For these incidents there is however an opportunity to drastically 

reduce the associated computation time, as has been discussed above. 

                                                   
108 As far as the intrinsic randomness in driving behavior is concerned, this is not so much due 

to the (cell-based) generation of capacity values from their (link-based) probability distribution 

functions, but rather due to the computationally expensive calculation of the parameters of 

these distributions. The variations in these parameters reflect the capacity effects of the other 

sources of variability, as discussed in chapter 6. 
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Summary of the possibilities to increase the speed of the model 

 

In the above it was explained that in order to substantially increase the 

speed of the developed model (to make it suitable for practical 

application), both the speed of its computational core (i.e. the dynamic 

traffic simulator) and the speed of the other model components would 

have to be improved. Different possibilities have been identified for 

this. All of these possibilities come at the expense of the quality of the 

output of the model. In view of the importance of a limited 

computation time, we may simply have to put up with this, however. 

As long as the introduced errors/inaccuracies are limited in comparison 

with the deficiencies already present in the model (which limit its 

practical applicability to making qualitative observations), they might be 

considered acceptable.  

 

The options identified for increasing the computation speed of the 

computational core are: 

- the use of a coarser discretization (i.e. longer cells and a larger 

time step) 

- the replacement of JDSMART by the simulator Flowsim-Live 

(which however does not model the destination-specific aspect 

of the traffic flow over the network) 

  

For the other model components the following options have been 

identified: 

- using a larger time interval for the demand and supply 

randomization (like a 10 or 15-minutes interval, instead of a 5-

minutes interval) 

- generating incidents at the link level, rather than at the cell 

level (after which the generated incidents might be randomly 

assigned to one of the cells of the link in question) 

 

Before implementing one or more of these options, it should first be 

investigated whether these indeed are acceptable (by performing some 

comparative test runs). For the last mentioned option this seems not 

necessary, however. 
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9. Conclusions and recommendations 
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9.1 Introduction 

In the research presented in this thesis it has been investigated what 

kind of additional or revised insights can be obtained from evaluations 

of the traffic system’s performance (in the context of considering taking 

strategic measures to alleviate congestion) when the inherent variable 

nature of daily traffic congestion on the motorway network is explicitly 

taken into account. (As opposed to the insights obtained by evaluations 

according to the more ‘traditional’ approach, in which only a kind of 

‘representative’ situation is evaluated.) 

 

This final chapter presents the main conclusions that can be derived from 

this research (section 8.2). Furthermore, it discusses the practical 

implications of the research findings obtained (section 8.3), and it comes 

up with a number of recommendations for further research (section 8.4).  

 

9.2 Conclusions 

1. A ‘representative’ calculation of the traffic conditions (that is, a 

calculation in which all traffic demand and supply variables are 

taken at their ‘representative’ levels, which for instance could be 

their means or medians), does not give a good impression of the 

performance of the traffic system.  

This is due to facts that: 

 The (day-to-day) travel time uncertainty aspect of this 

performance is disregarded (since the day-to-day variability in 

the traffic conditions is completely neglected in such a 

calculation), while this was identified as an important 

component in the societal costs of traffic congestion. 

 The ‘representative’ calculation underestimates the traffic 

congestion in certain respects, meaning that the traffic 

congestion calculated for the ‘representative’ situation is not so 

‘representative’ itself. This is related to the predominantly 

negative influence of the (neglected) variations. This 

predominantly negative influence arises from: 

• the purely negative nature of some of the sources of 

variability (such as incidents or bad weather events) 

• the non-linearity in the traffic system (i.e. the fact that the 

congestion level is a non-linear function of the difference 

between demand and supply, causing that the detriments 

of ‘negative occurrences’ are often larger than the benefits 

of ‘positive occurrences’) 
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This underestimation will not be satisfactorily remedied by 

calibrating the traffic model to the ‘representative’ congestion 

level. 

 

2. By explicitly considering the different sources of variability in 

evaluations of the performance of the traffic system, new insights 

can be obtained into the relative importance of these sources. 

In the analyses that have been performed in this thesis (for the 

purpose of demonstration) it was found that: 

 The capacity variations due to the intrinsic randomness in 

human driving behavior play a central role in (peak period-

related) traffic congestion on weekdays, considerably increasing 

both the mean and median levels of the amount of traffic 

congestion, the variability of the amount of traffic congestion, 

and the instability of the traffic conditions (i.e. the extent to 

which one’s realized travel time might deviate from the 

instantaneous travel time at the moment of departure). 

 The seasonal demand variation over the months of the year 

plays an important role in weekday congestion as well 

 The intrinsic randomness in travel behavior, the ambient 

conditions (weather and daylight/darkness) and events play a 

much smaller role in weekday congestion. It is to be noted, 

however, that very occasionally, extreme weather conditions 

may disrupt traffic to a very severe extent, causing large costs 

to society. 

 Ignoring the influences of incidents and road works, events 

seem to be the most important source of weekend day traffic 

congestion. 

 

3. Explicitly accounting for the different sources of variability can 

provide us with new insights into the effectiveness of specific 

measures that are proposed to alleviate traffic congestion. More 

specifically, the ‘traditional’ way of evaluating the effectiveness of 

a measure (in which only a kind of ‘representative’ situation is 

considered) may result in a SIGNIFICANT UNDERESTIMATION OF THE 

BENEFITS of this measure. 

This is due to facts that: 

 A ‘representative’ calculation underestimates the amount of traffic 

congestion (as discussed above), and thereby underestimates 

the potential benefits of proposed measures (aimed at 

alleviating this congestion) as well. 

 In an evaluation according to the traditional approach potential 

benefits of a considered measure may remain unnoticed due to 

nonlinearities and trend breaks in the behavior of the traffic 

system. This applies particularly to (the prevention of) spillback 

of congestion to other network elements. If this spillback occurs 

only in part of the occasions (say less than 50%), it will not be 
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included in the representative analyses. Consequently, the 

benefits achieved on these other network elements will not be 

reflected in the evaluation results. 

 In an evaluation according to the traditional approach, no 

information is obtained on the improvements in travel time 

uncertainty (due to the fact that the day-to-day variability in 

the traffic conditions is not considered), while this improvement 

might be an important component in the benefits of a traffic 

measure. 

The precise nature and extent of the additional/revised insights into 

the effectiveness of a measure will be highly context and measure 

specific. Of course, these new insights are not necessarily all 

positive in nature. Some more negative aspects of a measure could 

be brought to light as well. 

 

9.3 Practical implications of the results 

1. The last conclusion mentioned above (no 3) implies that in 

practice more systematic attention should be given to the inherent 

variability in traffic, when evaluating the effectiveness of 

measures that are proposed to alleviate congestion. Because of the 

complexity involved (especially in case of heavily loaded networks 

in highly urbanized areas), this would have to be done by using a 

model in which the different sources of variability are explicitly 

accounted for, such as the model developed in this project. 

It should be stressed, however, that this model was developed 

solely for the research task considered in this project, and thus not 

directly for practical application in the evaluation of concrete 

projects. In such practical evaluations, the model can only be used 

in a qualitative way, to find out whether certain effects (i.e. 

benefits or detriments) of a measure may be overlooked (or 

considerably underestimated) in the evaluation according to the 

traditional approach. The model is not sufficiently valid for making 

quantitative inferences on the effects of concrete real-life 

measures, due to the following problems: 

 In this case, some deficiencies in the model would become 

relevant, related to some modeling issues that require 

substantial further research (section 9.4.1 – sub 2-5). In the 

model applications presented in this thesis these deficiencies 

were less important, because of the fact that it was not 

intended to come up with firm quantitative conclusions for one 

specific real-life situation. 

 A proper calibration would be required, in order to tailor the 

model to the specific situation at hand. Such a calibration seems 

unfeasible, however. The only way to ‘tune’ the model’s 

parameter settings to a practical situation is then by conducting 

location-specific empirical research on the different influencing 

factors to which the parameters relate. However, this will be too 
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time-consuming for a practical study. Moreover, a really good 

end result (in terms of model validity) is of course still not to be 

expected then. 

Another issue relevant to the practical applicability of the model is 

its computation time. Currently, the computation time required for 

one model run is in the order of days or weeks, which is related to 

the large number of simulations that is to be performed. For 

practical applications, this computation time would have to be 

reduced. Such a reduction could be achieved in three different ways:  

 Using faster computers (or multiple computers in parallel). 

 Reducing the required number of simulation runs, by 

implementing a more efficient sampling technique (9.4.1 – sub 7). 

It is important to note that the required number of simulation runs 

cannot be reduced by simplifying the model. For given 

performance indicators and a given requirement with respect to 

the statistical accuracy that is to be achieved, this number is 

directly governed by the statistical properties of the traffic 

conditions. 

 Increasing the speed of the developed model (i.e. reducing the 

amount of computation time required per individual simulation 

run), involving a tradeoff between computation time and model 

accuracy (9.4.1 – sub 8). 

 

2. When considering taking strategic measures to alleviate traffic 

congestion, priorities can be set by considering the relative 

importance of the various primary sources of congestion, using the 

results of model evaluations as performed in this project. 

The results presented in this thesis indicate that: 

 Peak period-related traffic congestion might relatively 

effectively be alleviated by taking measures which reduce the 

effects of the intrinsic randomness in human driving behavior, 

although these might not be so easy to find. 

 Up to a certain extent, weekend day traffic congestion can be 

avoided by a careful planning of events, including the provision 

of route guidance, adequate parking facilities and appropriate 

alternative transport modes. 

 

3. In view of the important role of the intrinsic randomness in human 

driving behavior (section 9.2 – sub 2), it is hypothesized that the 

impact of future Advanced Driver Assistance Systems might actually 

be larger than currently anticipated upon. Insofar as these systems 

would exclude the human factor (by actively taking over control), 

they could reduce this intrinsic randomness in the capacities109, and 

thereby significantly improve the traffic conditions. 

                                                   
109 Note that if such a system allows drivers to make their own settings (based on their own 

driving preferences), the reduction in the intrinsic capacity randomness will obviously be much 

smaller.     
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9.4 Recommendations for further research 

9.4.1 Improvement of the developed model 

 

1. Much more empirical research is necessary with respect to the 

frequencies and effects of the different sources of variability, in 

order to give the model a more solid foundation. 

 

2. As far as the random variations in capacities due to the intrinsic 

randomness in human driving behavior are concerned, this 

additional empirical research cannot be restricted to ‘finding some 

empirical numbers’. For this source of variation additional research 

is necessary which is more fundamental in nature. This research 

should be directed mainly at the spatial dependency in this 

variation (which arises from the fact that it is partly the same 

traffic which traverses the subsequent sections of a road). 

To the best knowledge of the author, this spatial dependency has 

never been studied. The modeling assumptions on this dependency 

appear to have an important effect on the generated congestion 

levels, however. 

 

3. More research is necessary into the issue of how to deal with the 

problem of confronting an n-minute capacity distribution with a 

traffic demand which varies with the time interval of the 

simulation of the traffic propagation (which has to be set at a few 

seconds or even less in order to obtain a sufficiently accurate 

traffic flow modeling). 

 

4. It is advised to implement a feedback in the model from the actual 

traffic conditions to the route choices (reflecting the influence of 

traffic information provision). 

For this, it is recommended to use the hybrid route choice model 

described in (Pel et al, 2009). A solution is then to be found for the 

problem that this is currently not feasible in terms of computation 

time. 

 

5. It is advised to incorporate feedbacks to the other demand 

governing travel choices (i.e. trip making decisions, destination 

choices, mode choices and departure time choices) as well. 

Currently, this is unfeasible, however, due to a lack of knowledge 

on these effects. This knowledge can only be obtained by 

conducting dedicated research. 
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6. It is recommended to give further consideration to the validity of 

the model.  

In this project the evaluation of this validity has been largely limited 

to an analysis based on theoretical considerations (apart from some 

quantitative considerations on the generated congestion levels) . No 

systematic validation on empirical data has been performed, 

because of the unfeasibility of a proper calibration of the model to 

a specific real-life situation 110 . However, an alternative approach 

could be to perform this validation at a more general level. In this 

case, it would be analyzed whether the orders of magnitude of the 

calculated indicator values (made dimensionless, for example by 

division by the free flow travel time) are roughly in the range 

observed in practice, and whether the shapes of the computed 

distributions are consistent with those found in reality (for example 

in terms of the ratios between different statistics of these 

distributions). It is also strongly advised to subject the model to a 

thorough check on possible remaining programming bugs.  

 

7. It is advisable to study the option to implement a more advanced 

(i.e. more efficient) sampling method, in order to reduce the 

required number of simulation runs. 

Possible methods could be the Latin Hypercube Sampling approach, 

or the Importance Sampling technique. The latter is expected to 

yield the largest reduction. 

 

8. In order to increase the speed of the developed model (i.e. reduce 

the amount of computation time required per individual 

simulation run), it could be considered to implement the 

modifications listed below. Since these modifications come at the 

expense of the quality of the output of the model, it should first 

be studied whether they are acceptable. This involves a tradeoff 

between output accuracy and computation time. 

 Using a coarser discretization in the dynamic traffic flow 

simulation (i.e. longer cells and a larger time step). 

 Replacing JDSMART (i.e. the dynamic traffic simulator which is 

used as the computational core of the model) by the simulator 

Flowsim-Live (which however does not model the destination-

specific aspect of the traffic flow over the network). 

 Using a larger time interval for the demand and supply 

randomization (like a 10 or 15-minutes interval, instead of a 5-

minutes interval). 

 Generating incidents at the link level, rather than at the cell 

level (after which the generated incidents might be randomly 

assigned to one of the cells of the link in question). 

                                                   
110 Note that such a calibration to a specific situation was not required for the research tasks at 

hand, since it was not intended to come up with results for one particular actually existing 

situation. 
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9.4.2 Further exploration of (possible) new insights 

 

1. By way of illustration, in this project six sources of variability have 

been compared on their relative contribution to traffic congestion. 

By extending this investigation to the other sources of variability, 

and repeating it for different spatiotemporal configurations (with 

respect to both the infrastructure network and the associated 

demand pattern), a more complete and more general picture can 

be obtained of the relative importance of the different sources of 

variability. 

This information may be valuable in two different ways: 

 It might yield important insights into how traffic congestion can 

be remedied most effectively. For example, if the relative 

contribution of incidents proves to be large, incident 

management measures might have a relative high effectiveness 

 Insofar as certain sources of variability are found to be 

negligible compared to others (as a general rule), these can be 

omitted in future model evaluations (both in research studies 

and in practical applications). 

Of course, a proper sensitivity assessment with respect to important 

model parameters should be part of this analysis as well. 

 

2. By studying different types of measures with the developed 

model, it could be investigated to what extent the explicit 

consideration of the variability in traffic provides us with revised 

insights into the relative effectiveness of these measures. 

These measures may include traffic management measures (such as 

ramp metering, dynamic use of the hard shoulder lane, provision of 

route information/advices, and incident management measures), 

but also demand management measures (i.e. measures aimed at 

reducing or redistributing the traffic demand, such as road pricing) 

and infrastructural measures (such as the addition of an extra lane, 

the creation of traffic buffers, and the physical separation of long 

distance and local traffic). Obviously, the effectiveness of measures 

may be highly context-dependent. This means that the measures 

should be evaluated in multiple different spatiotemporal 

configurations (with respect to both the infrastructure network and 

the associated demand pattern), in order to arrive at conclusions 

with some general validity. Absolute generality is of course not 

attainable, however. 

 



 
 
 

 

 

 
 292 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

 

3. In section 9.3 – sub 3, it was hypothesized that the impact of 

future Advanced Driver Assistance Systems might actually be larger 

than currently anticipated upon. Although the effects on the 

variability of the capacity would have to be investigated by means 

of microscopic analysis, the final impacts of these capacity effects 

could be studied with the model developed in this project. 

It should be noted that it is not inconceivable that such systems also 

might increase the vulnerability of the traffic system to a certain 

extent, by introducing the possibility of ‘common mode failure’. If 

all vehicles equipped with a certain actively controlling system 

would react in one uniform way to a certain (external or internal) 

condition, which may be a desirable reaction from the point of view 

of the individual vehicle, but not from the point of view of the 

traffic flow as a whole, this could potentially be very detrimental to 

the traffic conditions. Insofar as this kind of reactions on certain 

circumstances could be translated into effects on the capacity 

distribution functions, this issue could be studied as well with the 

developed model. 

 

4. It might be hypothesized that certain traffic management 

measures that help to increase the throughput of existing 

infrastructure might strongly deteriorate the performance of the 

traffic system under certain disturbing conditions, which could be 

studied with the developed model. 

This for example might be the case for rush-hour lanes. The 

availability of such a rush-hour lane will attract additional traffic. If 

then a situation occurs in which this rush-hour lane cannot be 

opened to traffic (for example due to adverse weather conditions or 

an incident), this can be expected to have very detrimental 

consequences. Furthermore, if the hard shoulder of the road is 

sacrificed for the rush-hour lane, incidents are more likely to have 

larger disrupting effects on the traffic conditions. 

The model developed in this project could be used to investigate to 

what extent this type of effects is important in the overall 

performance of a traffic management measure, and under which 

conditions (such as the utilization rate of the infrastructure supply). 

This is an interesting topic for further research. 
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Appendix 1 - Existing models dealing with variability 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A1.1 SMARA      

(Simulation Model for Analyzing the Reliability of Accessibility) 

SMARA is a model for analyzing the variability in travel times, 

developed by TNO Inro (a Dutch institute for applied scientific research 

in the field of traffic and transport) for the Dutch Spatial Planning 

Agency. It calculates travel time distributions between origin and 

destination zones that together cover the whole of the Netherlands, 

based on variations in the demand and supply variables. The model is 

developed for analyzing the situation on working days only. The 

situation on weekend days (or public holidays) cannot be considered 

with the model. The model is primarily meant as a tool enabling to 

make statements at the strategic level about the reliability of the origin-

destination travel times, for example relating to the (expected) 

development of this reliability in the coming years, the mutual 

differences between different regions, and the effects of infrastructural 

measures or new residential areas (Meeuwissen et al, 2004). SMARA 

does not only consider the motorway network. Up to a certain degree 

the secondary and local networks are included as well.  

 

SMARA is based on a static traffic assignment model. This means that 

the evolution of the traffic conditions over time is not considered. The 

model considers two different time periods of the day: a ‘typical peak 

hour’ 111  and a ‘typical off-peak hour’ 112 . The fact that the model 

combines all different peak hours (or all different off-peak hours, 

excluding the period 0-6h) into one number or probability distribution 

actually is a negative feature of the model. This way results are 

obtained that are less connected to the way in which traffic congestion 

causes costs to society (as described in chapter 3).  

 

The variability in traffic demands and supply characteristics is addressed 

by means of the Monte Carlo simulation technique. The model 

performs a large number of simulation runs (one for each working day 

of the year). For each of these runs the nominal values of all origin-

destination traffic demands and road section capacities are multiplied 

by a number of ‘correction factors’. By these correction factors the 

influences of the different sources of variability are expressed. Each of 

them is drawn from a (discrete) probability distribution (a so-called 

‘probability table’), expressing the effects and the corresponding 

probabilities/frequencies of the various sources of variability. These 

                                                   
111  A typical peak hour is in terms of level and composition equal to the average of the 

morning peak (7-9h) and the evening peak (16-18h), and in terms of direction equal to the 

morning peak (Meeuwissen et al, 2004)  

112 A typical off-peak hour is defined as the average of the periods 6-7h, 9-16h, and 18-24h. 
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effects and probabilities/frequencies have been derived from literature 

or analysis of empirical data. The nominal traffic demand levels for all 

origin-destination relations are obtained from another model (viz. a 

‘standard’ traffic model). 

 

For two of the sources of traffic supply variability not only the 

capacities of the road sections are ‘corrected’, but the speed levels as 

well: 
- In the case of road works an upper limit is set on the speed on 

the affected road sections. This upper limit represents the 
(reduced) speed limit in the work zone. 

- For the various combinations of weather and luminance 
conditions speed correction factors are applied.  

 

Not all sources of fluctuations identified in chapter 2 are taken into 

account in the model. As far as the fluctuations in traffic demand are 

concerned, the following sources are included: 
- time of day (up to a certain degree) 
- day of week113 (working days only) 
- period of year113 
- events 
- other variations in human travel behavior113 (up to a certain 

degree) 

 

This means that the following sources of variations in traffic demand 

are not taken into account: 
- time of day (remaining part) 
- weekend days versus weekdays 
- public holidays  
- variations in weather conditions 
- road works 
- traffic information dissemination 
- other variations in human travel behavior (remaining part) 

 

For the fluctuations in traffic supply, the following sources are taken 

into account in the model: 
- variations in weather conditions 
- variations in luminance 
- incidents 
- road works 

 

Not included are: 
- traffic control actions 
- variations in vehicle population 
- variations in driver population 
- variations in human behavior 

 

Possible interdependencies between the various sources of variations 

(like the interdependency between capacity reduction due to adverse 

weather conditions and the increased probability on the occurrence of 

                                                   
113 ‘Day of week’, ‘period of year’ and ‘other variations in human travel behavior’ are taken 

together as one source of variation. 
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accidents due to the same weather conditions) are not taken into 

account in the model. 

 

The different sources of variations can easily be ‘switched on or off’ in 

the model (in order to find out their individual contributions to the 

performance indicators considered). It is just a matter of setting their 

probabilities/frequencies in the input files to zero, or setting the 

associated correction factors to 100 percent (corresponding to a zero 

correction). By ‘switching off’ all different sources of variability 

simultaneously, it would be possible to calculate the representative 

situation. However, there is no need to perform this as a separate 

(manual) step, since SMARA automatically includes this representative 

situation in its output.     

 

Due to the fact that SMARA is based on a static traffic assignment 

model, the travel times cannot be calculated from the process of queue 

formation and dissolution. Instead, the travel times are derived from a 

predefined relationship relating the average speed on a road section to 

the ratio of demand and capacity on this road section. It should be 

noted that this relation is not fully comparable to the fundamental 

diagram discussed in section 2.1. After all, the relation used in static 

traffic assignment models allows for demands larger than the capacity, 

which in reality physically is not possible, and therefore is not possible 

according to the fundamental diagram either. 

 

Drawbacks of such a static traffic assignment approach are: 
- The traffic congestion occurs at the wrong location (i.e. in the 

bottleneck, instead of upstream of it). 
- Blocking back effects are not modeled (since there are not really 

queues in static traffic assignment models). 
- The temporal redistribution effect of traffic congestion is not 

modeled (since the vehicles are at all different road sections that 
are part of their route at the same time114). 

- Overflow from the previous or to the next time interval is not 
taken into account (since all trips are assumed to be completed 
within the single time interval considered, even though travel 
times might be longer than this time interval). 

- En-route changes in route choice (in response to changed traffic 
conditions) cannot be modeled. 

- The effect of the capacity drop cannot be modeled explicitly. 

 

Clearly, this way of calculating the traffic conditions is not very 

accurate. In SMARA the static assignment approach was chosen in view 

of its relatively limited calculation time (Hilbers et al, 2004). This 

calculation time was important because of the fact that it was aimed for 

to perform simulations for the whole of the Netherlands. 

 

In SMARA the origin-destination traffic demands can be assigned to the 

different route options in two different ways: 
- by using a fixed-path assignment, or 
- by using a fully adaptive assignment. 

                                                   
114 After all, only one time interval is considered. 
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In case of a fixed-path assignment for all simulation runs one and the 

same set of route choice fractions is used. These are route choice 

fractions calculated for the ‘nominal’ situation (i.e. the situation without 

any of the correction factors for the influences of the sources of 

variability). Using the same route choice fractions for all simulation runs 

corresponds to the assumption that road users do not change their 

route choice in response to ‘abnormalities’ in the traffic conditions. In 

case of minor differences in traffic conditions this might be a reasonable 

assumption. From section 2.3.3 it may be clear though that in case of 

severe disruptions this is not a realistic assumption anymore. 

 

In case of the fully adaptive assignment for each individual simulation 

run the route choice fractions are calculated anew. This corresponds to 

the assumption that road users are fully aware of the (current and 

future) traffic conditions on the different route alternatives, and (based 

on this knowledge) optimally adapt their route choice in response to 

‘abnormalities’ in the traffic conditions. Obviously this is not a realistic 

assumption either, since the largest part of the road users generally will 

hold to their ‘standard’ routes. In reality, the situation will be 

somewhere in between the situations modeled by a fixed-path 

assignment and a fully adaptive assignment. In SMARA such an 

‘intermediate’ assignment option is not available however (Hilbers et al, 

2005)115.  

 

As output SMARA provides both the results on the level of individual 

road sections and the results on the level of origin-destination relations. 

In the latter case, the travel times for the different route alternatives are 

averaged using the route choice fractions as weight. As the output is 

aggregated/processed to some extent already (rather than being the 

‘rough’ simulation results), a large part of the indicators selected in 

chapter 3 cannot be calculated from it. Note that indicator VI 

(representing the travel time instability) obviously could not be 

calculated from the results of a static traffic assignment model anyhow. 

 

In chapter 3 it was explained that it is desirable to exclude the vacation 

periods and periods with planned (large scale) road works from the 

day-to-day distributions of travel times, and to consider separate day-

to-day distributions for the different days of the week. In SMARA this is 

not possible however, since ‘day of the week’, ‘period of the year’ 

(including vacations) and ‘other variations in human travel behavior’ 

are considered together as one source of demand fluctuations (rather 

than explicitly specifying each of these sources individually), and no 

distinction is made in planned (large scale) road works and emergency 

repair. 

 

As far as the incorporation of the effects of the measures to be 

considered (aimed at alleviating traffic congestion) are concerned, 

SMARA offers the following possibilities: 

                                                   
115 It cannot be excluded however that this has been changed in any possible newer versions 

of SMARA (since 2005).  
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- modifications to the network structure; 
- changes of the nominal demand levels (separately for the peak 

and off-peak period) for given origin-destination relations; 
- changes of the nominal capacities of given road sections; 
- adjustment of the relationship relating the speed to the demand-

capacity ratio for given road sections;  
- adjustment of the correction factors expressing the effects of the 

various sources of variability; 
- adjustment of the probabilities/frequencies of the various sources 

of variability. 

 

In spite of these possibilities, part of the conceivable measures cannot 

satisfactorily be incorporated in the model however. This primarily 

relates to measures whose effect is highly dynamic in nature. Since 

SMARA is not dynamic but static in nature, such effects cannot 

properly be accounted for. Measures directed at influencing sources of 

variation that are not included in SMARA obviously cannot be 

incorporated in the model either. 

 

A1.2 LMS-BT (National Model System - Reliability Tool)116 

LMS-BT (developed by Rand Europe, by order of the Dutch national 

road authority) is a tool that can be used for estimating travel time 

reliability from the output of the LMS (National Model System 117) or 

NRM (New Regional Model118). These are strategic traffic models, with 

which traffic prognoses are calculated in the Netherlands. The output 

of these models consists of the traffic volumes and speeds on all main 

links of the national road network (LMS) or regional network (NRM) on 

an ‘average’ working day, for three parts of the day: the morning peak, 

the evening peak and the rest of the day. LMS-BT calculates five 

reliability indicators from these output variables (again separately for 

the morning peak, evening peak and rest of the day), using predefined 

relationships. 

 

These five reliability indicators are: 
- the NoMo reliability indicator (i.e. the percentage of trips ‘in 

time’ – see section 3.3.3); 
- an adapted version of the NoMo reliability indicator (i.e. the 

percentage of trips ‘not too late’); 
- the travel time gain (based on the route flows and the differences 

between the 90th percentile route speed and the median route 
speed); 

- the travel time loss (based on the route flows and the differences 
between the median route speed and the 10 th percentile route 
speed); 

- the costs of (un)reliability (based on the former two indicators 
and a user-specified monetary valuation of (un)reliability). 

While the basic calculations in LMS-BT are performed at the level of 

individual routes, the output is aggregated at area level (i.e. at the level 

                                                   
116 In Dutch: Landelijk Modelsysteem - Betrouwbaarheidstool  

117 In Dutch: Landelijk Modelsysteem 

118 In Dutch: Nieuw Regionaal Model 



 
 
 

 

 

 
 304 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

of the whole LMS/NRM area or one or more user-specified parts of 

this). In LMS-BT only the main road network is considered.  

 

The predefined relationships that are used to calculate the reliability 

indicators from the LMS/NRM output have been derived from an 

empirical analysis. In this empirical analysis, the average route speed 

(averaged over the working days of a year) was found to be the most 

important explaining variable for the various reliability indicators 

considered (Rand Europe, 2004). Therefore, empirical relations between 

the average route speed on the one hand and the various reliability 

indicators on the other hand have been used as the basis for LMS-BT. 

For the NoMo indicator and its variant, the route length turned out to 

be an important variable as well. For longer routes, lower reliabilities 

were found. This has been included in LMS-BT by applying a correction 

for the length of the route considered. 

 

Of course, the speeds calculated by the LMS or NRM (calculated for 

‘representative’ traffic demand and supply conditions) cannot directly 

be used in LMS-BT as if it they were average speeds. Average speeds 

do include the effects of disturbances, while the ‘representative’ 

LMS/NRM speeds do not. Therefore, the LMS/NRM speeds can be 

expected to be higher than the corresponding average speeds found in 

real-life. However, there might be other systematic differences involved 

as well. 

 

Obviously, for these differences a correction should be applied. The 

most obvious approach for this would be to consider a scatter plot of 

the LMS/NRM speeds and the corresponding119 average speeds found in 

real-life, and look for a possible relationship. However, Rand Europe 

(2004) dealt with this problem in a rather different way. They 

converted both the LMS speeds and the empirical average speeds into 

travel times per kilometer, and subsequently plotted the distributions of 

these two. Then, they applied a transformation to the LMS data in 

order to make its distribution correspond better to the distribution of 

the empirical data. After this transformation there are still important 

differences between the two distributions though. Therefore, Rand 

Europe concludes that their tool may not be that accurate in calculating 

the absolute values of the reliability indicators. For relative studies (i.e. 

comparing different scenarios) on the other hand, the tool is judged to 

be suitable. 

 

In LMS-BT, the frequency of some congestion causing disturbances (i.e. 

rainy weather, road works, accidents, and large accidents) can be 

varied (by specifying an index indicating the relative frequency with 

respect to the situation in the base year 2000120), in order to see their 

influence on the reliability indicators. These influences are calculated 

using empirical relations between the occurrence of the disturbances 

and average route speed. The impact of these disturbances can be 

                                                   
119 i.e. for the same road sections / routes 

120 It should be noted that this index should be kept within the range of 0.5 to 2.0 (see Grol et 

al, 2004), in order to avoid too extreme extrapolations. 
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varied as well, by specifying indices indicating their average effect on 

speed (relative to the situation in the base year). 

 

In terms of model type, LMS-BT in fact can be seen as a combination of 

a knowledge-based model and a black box model. The knowledge-

based model (LMS or NRM) is used to calculate the representative 

traffic conditions in the network. Next, the black box model (consisting 

of the empirical relations between, on the one hand, the representat ive 

traffic conditions and the effects/frequencies of the disturbance factors, 

and, on the other hand, the performance indicators to be evaluated) is 

used to compute the values of the performance indicators. The main 

advantage of this method is its limited calculation time. Its quality 

leaves much to be desired, however.  

 

First the quality of the knowledge-based model part (viz. the LMS or 

NRM) is discussed. An important limitation of the models LMS and 

NRM is that they, like SMARA, are not dynamic121. Unlike SMARA, the 

LMS and NRM however do take into account both the limited inflow to 

links and blocking phenomena (in the travel time calculations). 

Furthermore, in the latest update of the LMS and NRM some 

improvements have been made to model the location and length of 

traffic jams in a more realistic way (Hofman, 2010). However, due to 

the fact that the models are not really dynamic (and use a rather course 

spatial discretization), the modeling of the processes of queue 

formation/dissolution and blocking back cannot be better than a rough 

approximation. Obviously the phenomenon of the capacity drop is not 

taken into account in these kinds of models. 

 

Now the quality of the black box model part is considered. In section 

3.5.2 it was already discussed that the use of empirical relations such as 

included in LMS-BT in fact is not desirable, since: 
- The empirical relations seem not accurate enough for evaluating 

measures with effects of only a few percent. 
- It is not certain whether the empirical relations hold true for all 

conceivable types of measures (and in every conceivable 
situation). 

- The existence of a reliable relation between the representative 
and average speed (or travel time) is to be doubted. 

- In any case such a relation between the representative and 
average speed would not be preserved in situations in which 
certain types of measures are taken. 

 

In order to give sound results, in fact the empirical (i.e. statistical) 

relations should implicitly ‘embody’ all underlying mechanisms in the 

traffic flow, like the processes of queue formation and dissolution, the 

capacity drop phenomenon, the relation between flow and speed, the 

blocking back phenomenon, the temporal redistribution effect of the 

occurrence of traffic congestion, and the effects of traffic congestion on 

route choice and departure time choice. Clearly this is not sufficiently 

the case though, if only because of the fact that many of these 

                                                   
121 The LMS and NRM have always been static models. However, in their newest versions a 

semi-dynamic assignment method is used. 
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mechanisms are rather location-dependent 122 , while the empirical 

relations do not take into account any location-dependent information, 

except for the local representative speed value (calculated with the LMS 

or NRM). This obviously is not sufficient however.   

 

Once could also question the accurateness of the estimation of the 

empirical relations for the influence of the different disturbance factors. 

After all, in section 4.2 it was explained that: 
- The data required for such an empirical analysis is typically 

incomplete. 
- It is difficult to properly isolate the individual influences of the 

different disturbance factors from empirical datasets, 
particularly because there are mutual interdependencies with 
other variations. 

 

A drawback of LMS-BT is that the possibilities for varying the individual 

influences (i.e. frequencies and effects) of the various sources of 

variability are very limited: 
- Only for rainy weather, road works and accidents such 

possibilities are offered. For all other sources of variability 
identified in chapter 2 there are no such possibilities at all. 

- The influences of these sources (i.e. rainy weather, road works 
and accidents) can be varied only within a limited range. They 
cannot be completely ‘switched off’, since the empirical 
relations may not be extrapolated that far. 

As a consequence, this model in fact is not appropriate for studying the 

relative importance of the different sources of variability.  

 

Another drawback of LMS-BT is that the possibilities for incorporating 

the effects of measures (aimed at alleviating traffic congestion) are 

more limited than in SMARA. This is due to the facts that: 
- Most of the sources of variability cannot be changed in LMS-BT 

(see above), with the result that the effects of the measures 
directed at influencing these sources cannot be incorporated in 
the model. 

- The effects of the sources of variability that can be changed in 
LMS-BT (i.e. rainy weather, road works and accidents) are 
defined in a rather implicit way (viz. in terms of their influence 
on the average speed), which makes it difficult to properly 
incorporate the effects of measures directed at influencing 
these. 

Just like in SMARA, measures whose effect is highly dynamic in nature 

cannot satisfactorily be incorporated in LMS-BT. 

 

The output of LMS-BT clearly does not meet the requirements set in 

section 4.4. Only five performance indicators are calculated, which do 

not match the performance indicators selected in section 3.4. 

Computing the desired performance indicators in a post-processing step 

is in this case not possible either, since there are no raw simulation data 

available for this (due to the fact that the model is largely based on 

empirical relations instead of traffic simulations). 

 

                                                   
122 i.e. dependent on local factors such as the network structure 
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A1.3 Waiting time model for main roads123 (WTM) – Traffic 

Quality / ESIM 

The ‘Waiting time model for main roads’ is a model which has been 

developed in the Netherlands in order to be able to assess the 

performance of main roads (in terms of the occurrence of traffic 

congestion) in a more accurate way, to enable a more objective way of 

dealing with traffic congestion in traffic policy, roadway dimensioning, 

and timing of infrastructural projects (Toorenburg, 1988 & 1990). 

Actually, a first version of the model was used for the study into the 

‘optimal’ congestion probability, conducted as part of the preparation 

of the national policy document SVVII (see section 3.3.3). However, 

after this study the calculation model has been further improved several 

times. 

 

With the model, several indicators characterizing the traffic congestion 

can be calculated, as a function of the traffic demand and the road 

capacity. Instead of considering only one specific situation (like a 

‘design’ peak hour), these indicators provide an overall characterization 

of the traffic conditions, considering all working days of the year. Both 

average congestion characteristics and the reliability of the traffic 

conditions can be evaluated with the model. The calculated indicators 

include the average daily sum of travel time losses, the average delay of 

vehicles involved in queues, the average daily duration of queuing, the 

percentage of vehicles experiencing traffic congestion, and the 

percentages experiencing more than 5, 10, 15 or 30 minutes of delay 

(Transpute, 1989). 

 

In the model an individual ‘isolated’ bottleneck or road section is 

considered. All relations with other parts of the traffic network are 

neglected. This means that network effects (i.e. blocking back, the 

temporal redistribution effect, and route choice effects – see section 

2.3) are not taken into account, which obviously is an important 

limitation of the model. The model output for a given bottleneck or 

road section therefore can be considered as the ‘intrinsic weakness’ of 

this bottleneck or road section (rather than a characterization of the 

congestion observed in reality). 

 

The ‘Waiting time model’ has been implemented in different tools (viz. 

‘Traffic Quality’ and ‘ESIM’; see Toorenburg, 1997). In these tools, the 

‘Waiting time model’ is used in different ways/forms. In ‘Traffic 

Quality’ it is used only in an indirect way. The output then is derived 

from a precompiled set of simulation results, using only a few input 

variables characterizing the situation at hand: the ratio of the annual 

average working day traffic demand and the (nominal) capacity of the 

road section under consideration, the percentage freight traffic, and the 

so-called ‘t-values’ (two parameters describing the daily traffic demand 

                                                   
123 in Dutch: ‘Wachttijdmodel hoofdwegen’ 
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profile124). This way quickly a first approximation of the traffic quality on 

a given road section can be obtained. It is a convenient approach for 

studies for which no very specific data are available, or for studies in 

which many different road sections are to be analyzed within a short 

period of time. Actually, the tool ‘Traffic Quality’ was used for 

performing a yearly assessment of the quality of the traffic operations 

on all sections of the Dutch main road network.   

 

Clearly, such an approach is not appropriate for the task at hand 

however, since we want to make very specific changes to the traffic 

system, which result in situations for which no results can be found in 

such a precompiled set of simulation results. (Changes like ‘switching’ 

different sources of variability in traffic demand and supply ‘off’, and 

implementing measures whose effects cannot satisfactorily be 

expressed in terms of the input variables mentioned above)  

 

In ESIM – meant for assessing the quality of a road design or an 

existing road section in the current or in a prognosis-situation – the 

‘Waiting time model’ is used in a direct way: with this model dynamic 

traffic simulations are performed for the specific situation at hand 125. 

This way, more accurate and more situation-specific results are 

obtained. In this case, more specific input data are used, such as the 

location-specific (average) working day traffic demand profile. The 

computations are based on a simple vertical queuing model. This means 

that the physical dimension of the queue is not considered 126. All excess 

traffic demand (i.e. the demand exceeding the bottleneck capacity) is 

supposed to be ‘stored’ at the bottleneck location. For the delays 

incurred due to the capacity exceedance, this does not make any 

difference at all, as long as no network effects do occur. As mentioned 

above, network effects are neglected however in this model. 

 

For each time step, the model compares the traffic demand at the 

bottleneck location and the capacity, and – if applicable – updates the 

number of vehicles in the queue with the difference between these 

two. The capacity drop (i.e. the difference between the free flow 

capacity and the queue discharge capacity; see section 2.1) is neglected 

in the model. From the computed course over time of the number of 

vehicles in the queue, and the inflow and outflow of the queue, rather 

                                                   
124 These two parameters indicate how the daily traffic demand profile at the road section 

under consideration can be approximated by a combination of three predefined basic 

components of such daily traffic demand profiles. They could be termed ‘shape parameters’ of 

the demand pattern, since they do not give any information on the absolute size of the traffic 

demand. Obviously, the shape of the daily demand pattern has a strong influence on the level 

of traffic congestion on the road in question. 

125 However, ESIM also includes the option to fall back on a precompiled set of simulation 

results, for purpose of reference or for situations in which no detailed input data are available 

or only a rough approximation of the output is desired. 

126 It should be noted that a separate ‘traffic jam module’ is added to ESIM, which allows the 

length of the queue and the traffic density and speed within the queue to be calculated in a 

kind of post-processing step.  
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straightforwardly a large number of performance indicators can be 

computed, such as the average delay. 

 

Obviously, also in free flowing traffic delays are incurred, due to the 

difference between the actual speed and the free speed (i.e. the 

average speed for a (almost) zero traffic volume; see section 2.1). In 

the first versions of the ‘Waiting time model’, these delays were 

neglected (i.e. only delays due to capacity exceedance were 

considered). In ESIM however these delays are taken into account, by 

using a separate model component for computing the free flow traffic 

conditions, added to the ‘Waiting time model’. For this, the model user 

needs to specify the speed limit, the relationship between the actual 

speed and the volume-capacity ratio, and the length of the road section 

under consideration. Due to this additional model component, ESIM 

can also calculate indicators like the average speed or travel time on the 

road section (also separately for free flow traffic conditions and forced 

traffic conditions), and the statistical distribution of the speed or travel 

time. 

 

In the simulations a time step of 1 hour is used (AGV, 1997). 

Obviously, this would be way too large for a sufficiently accurate (and 

stable) modeling of the propagation of the traffic flow over a network. 

In this model, this does not pose a problem though, since only an 

individual bottleneck location is considered, which removes the 

necessity to calculate propagation of the traffic. However, of course the 

time interval still should be short enough for a sufficiently accurate 

computation of the processes of queue formation and dissolution, and 

the delays resulting from these processes. In fact, a time interval of 1 

hour seems not short enough for this. 

 

The model repeats the simulations for a user-specified number of runs 

(with one run corresponding to one working day, and using different 

random seeds for different runs/days). Clearly, this number should be 

large enough to make sure that the variabilities are statistically 

sufficiently reflected in the model output. Nonetheless, due to its 

simplicity (and the fairly large time interval), the calculation time of the 

model is rather limited. 

 

The model does not (or not explicitly) take into account many of the 

sources of variability identified in chapter 2. The following sources of 

variability in the capacity are taken into account: 
- varying weather conditions (rainy weather only) 
- intrinsic variability (a combination of the effects of variations in 

driver and vehicle population, and (other) variations in driving 
behavior) 

This means that the other sources of capacity variations identified in 

chapter 2 (i.e. road works, incidents, variations in luminance, and traffic 

control actions) are not taken into account.  

 

Based on empirical research, the effects of the varying weather 

conditions (i.e. rain) are simulated by reducing the available capacity by 
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12% 127 , with a frequency of occurrence of 0.07 (AGV, 1997). 

Dependencies between the probabilities of occurrence of rain in 

subsequent time intervals likely are not taken into account 128. The effect 

of the ‘intrinsic’ variability is modeled by drawing the capacity values 

from a normal distribution with a coefficient of variation of 7%129. It 

seems that variations in the relationship between volume-capacity ratio 

and speed are not taken into account. 

 

Besides the (within-day) variability described by the average daily traffic 

demand profile, the model does also take into account other variations 

in the traffic demand, by adding a certain random element to the 

demand pattern. However, no information was found regarding the 

way in which this is actually done. In (AGV, 1997) it is stated that ESIM 

applies a traffic engineering reasoned random process on the user-

specified demand pattern (using the Monte Carlo technique). It seems 

that no distinction is made in the various sources of the variability. 

Regularities in the variations (related to the influences of the day of the 

week and the season) are not taken into account. Interdependencies 

with the variations in capacity are not considered either. 

 

Due to the fact that the different sources of variability in the traffic 

demand are not explicitly considered, they cannot separately be 

switched off (in order to assess their relative contributions to the 

congestion indicators). In combination with the fact that a number of 

sources of variability in the traffic supply conditions are not taken into 

account, this in fact makes the model rather inappropriate for assessing 

the relative contributions of the various sources of variability to the 

congestion indicators. 

 

The ‘representative’ situation can easily be computed with the 

simulation model. ESIM seems to offer a special possibility to perform a 

simulation without randomness for this (see AGV, 1997). Alternatively, 

one could also ‘manually’ switch off all sources of variability, by 

changing the relevant model parameters (like putting the probability or 

effect of rainy weather on zero). 

 

The possibilities that are offered by the model to evaluate measures 

that can be considered for alleviating traffic congestion are rather 

limited, due to the facts that: 
- many sources of variations are not – or not explicitly – included 

in the model, resulting in the inability to evaluate measures 
having effects on these; 

                                                   
127 In the Netherlands it nowadays is common to use a road surface of ZOAB (i.e. very porous 

asphalt concrete) on motorways. ESIM can take this into account by using a smaller capacity 

reduction for rainy weather.  

128  These dependencies at least were not taken into account in an earlier version of the 

‘Waiting time model’ (see Toorenburg, 1988). It cannot be claimed with certainty that they 

are not taken into account in the version used in ESIM either. 

129  Assuming that in the version of the ‘Waiting time model’ implemented in ESIM this 

percentage has not been changed as compared with the earlier version described in 

(Toorenburg, 1988). 
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- the time interval of the model (1 hour) is relatively large, which 
makes it doubtful whether measures with effects that are highly 
dynamic in nature can be modeled in a sufficiently accurate 
way; 

- in the model only an isolated bottleneck is considered, with the 
consequence that measures with effects with a clear ‘network 
component’ certainly cannot be incorporated in a satisfactory 
way. 

 

The standard output variables do not match the desired output 

indicators specified in section 3.4. However, using the detailed raw 

simulation results of the model, one can evaluate self-defined indicators 

as well (i.e. indicators that correspond more closely to the desired 

ones). An insurmountable difference however would remain then in the 

fact that the desired indicators are defined at origin-destination or 

network level, while the model can only evaluate indicators at the level 

of an individual road section / bottleneck. 

 

A1.4 Queuing Model for determination variability 

recurrent congestion (TU Delft) 

The queuing model of the TU Delft is an analogy to the previously 

discussed ‘Waiting time model’, developed at the Delft University of 

Technology because of the fact that in generally accessible literature 

few details were available on the latter model, while its approach was 

considered interesting (Botma, 1999). 

 

Just like the ‘Waiting time model’, the model consists of a vertical 

queuing model. By comparing the demand and capacity pattern for a 

bottleneck location, the processes of queue formation and dissolution 

are computed. A difference with the ‘Waiting time model’ is that 

different sources of systematic variations in the traffic demands are 

explicitly considered. These are the systematic variations with the time 

of the day, with the day of the week, and with the month of the year. 

The latter two are accounted for by multiplying the daily demand 

pattern by a day-of-week factor and a month factor 130 . Finally, a 

random fluctuation is added to the demand pattern. In order to avoid 

the demand pattern to fluctuate to widely, some autocorrelation was 

added to this random fluctuation. (This also seems reasonable, since it 

is plausible that if the demand during a certain time interval is relatively 

high, it is likely also relatively high during the next interval.) 

 

Another difference between both models is that the queuing model of 

the TU Delft uses a time step of 15 minutes, whereas the ‘Waiting time 

model’ uses a time step of one hour. As a consequence, the processes 

of queue formation and dissolution are computed with greater accuracy 

in the queuing model of the TU Delft. 

                                                   
130 Note that this is a rather simplified approach, since in reality not only the height of the 

daily demand pattern may be different for the different days of the week and the different 

months of the year, but its shape as well. 
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Apart from the differences described above, the two models are more 

or less the same, and consequently have the same advantages and 

drawbacks. For more information on these, the reader is referred to the 

section on the ‘Waiting time model’ (A1.3). 

 

A1.5 Traffic Quality – Network version 

In section A1.3, the ‘Waiting time model’ and the two tools in which 

this model has been implemented (i.e. the models ‘Traffic Quality’ and 

‘ESIM’) were discussed. It was described that the ‘Waiting time model’ 

only considers one individual bottleneck, in a way as if this bottleneck 

was isolated from the rest of the network. As was explained, this results 

in the following two drawbacks of the ‘Waiting time model’:  
- network effects are neglected, and 
- calculation of travel times / speeds on the level of routes over 

the network is not possible. 

Obviously, these drawbacks are equally applicable to ´Traffic Quality´ 

and ESIM. 

 

To overcome these drawbacks (insofar the model ‘Traffic Quality’ was 

concerned), a network version of ‘Traffic Quality’ was developed. It 

was recognized that a network traffic simulation technique in fact is the 

only approach with which the mutual interactions between the 

bottlenecks could be accounted for in a consistent way. The use of a 

pre-compiled set of simulation results – as in the original model ‘Traffic 

Quality’ – was abandoned in the network version. 

 

In ‘Traffic Quality – Network version’ use is made of the dynamic 

macroscopic traffic simulation model ‘Flowsimulator’, developed by the 

Dutch consultancy firm Transpute. This model can simulate the 

propagation of the traffic flow over a whole network. This way, mutual 

interactions between bottlenecks (related to the phenomena of 

blocking back, filtering and releasing – see section 2.3) are taken into 

account. Unlike many network traffic simulation models, Flowsimulator 

does not contain an origin-destination matrix and traffic assignment 

module for the distribution of the traffic over the various possible 

routes. Instead, it uses user-specified split fractions at the nodes of the 

network for this. These split fractions indicate how the outflow of a link 

is distributed over the different following links.    

 

In order to obtain a network version of the model ‘Traffic Quality’, 

Flowsimulator has been adapted. With the purpose of making optimal 

use of the traffic demand data available within the original version of 

‘Traffic Quality’ (i.e. the demand per individual section of the main 

road network), it was made possible to specify the traffic demands on 

the level of every single link of the network (Toorenburg, 2002). This is 

a very unusual characteristic. In conventional traffic flow models, the 

traffic demand is specified only on the entry links of the network (after 

which it is distributed over the different possible routes by means of a 

traffic assignment routine, or by using split fractions at the network 

nodes). 
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As a consequence of this way of specifying the traffic demand, the 

model is over-specified. In the simulations, this over-specification is 

dealt with by relaxing the principle of conservation of vehicles at the 

network nodes. This means that in the traffic simulations the total 

inflow and outflow of a node are not required to be equal (i.e., some 

inconsistency is allowed). In the simulation of the traffic propagation 

over the network, these inconsistencies are dealt with by multiplying 

the amounts of traffic ‘passed on’ at the nodes by a correction factor. 

Note that in this adapted version of Flowsimulator, the split fractions at 

the nodes do not have to be specified by the model user anymore, 

since they follow directly from the user-specified traffic demands at the 

links of the network. 

 

As long as the discrepancies are not too large, the relaxation of the 

principle of conservation of vehicles is not very detrimental to the 

simulation results. The main advantage of the over-specification is that 

one can easily obtain a simulation model that is properly calibrated (to 

the measured traffic demands 131 ) over the whole network. In a 

conventional traffic flow model, it is a difficult and time-consuming 

process to establish the traffic demand pattern (usually in the form of 

an origin-destination matrix) in such a way that the resulting traffic 

demands on the individual links do reasonably match the values 

observed in reality. 

 

It should be noted, however, that for the research questions under 

consideration in this project, this characteristic of the model ‘Traffic 

Quality – Network version’ is not an advantage. After all, for 

addressing these research questions it is not necessary to ‘match’ an 

actually existing situation. (In fact, considering a complete fictitious 

situation would do as well, as long as it ‘could have been’ a real-life 

situation.) Consequently, there is no issue of calibration to observed 

traffic volumes anyhow. 

 

In fact, for the task at hand, an approach in which the traffic demands 

are defined on origin-destination or route level is preferable to an 

approach in which the traffic demands are specified on link level (and 

propagated using split fractions), as used in ‘Traff ic Quality – Network 

version’ / Flowsimulator. This is because of the following reasons:  

 
1) Due to the definition of traffic demands on link-level, the 

model cannot properly deal with the route choice effects of 
traffic congestion. In its basic form these effects are not taken 
into account at all. A possible way to change this is by making 
split fractions dependent on the traffic conditions on certain 
links, but in general this certainly cannot offer a really 

                                                   
131 It should be noted that the link traffic demand patterns to be specified by the model user in 

fact are not directly the traffic volume patterns as measured on the links concerned.  After all, 

these latter are affected by the occurrence of traffic congestion, while the demand patterns 

required refer to the unaffected traffic quantities. This can be accounted for by fitting a 

combination of standard demand pattern components to the measured volumes, and using 

this fitted combination as link demand pattern (see Toorenburg, 2002). 
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satisfactory solution. For (very) simple networks it might be a 
solution however. 

2) In reality, the temporal redistribution effect of traffic congestion 
(i.e. the filtering and subsequent release of traffic) does not 
only dynamically affect the traffic volumes on the links, but the 
split fractions in the network nodes as well (even apart from the 
route choice effects discussed above). This is not accounted for 
in models in which the traffic demands are inputted on link 
level. In models in which the traffic demands are specified on 
origin-destination or route level this problem does not exist, 
since no predefined nodal split fractions are used in these types 
of models. 

3) Due to the definition of traffic demands on link-level, demand 
effects of traffic measures cannot easily be accounted for in a 
consistent way. As stated in (Transpute, 2002), due to this 
property the model in fact can only be applied on the ‘current’ 
situation (i.e. the situation for which the user-specified link 
traffic demands have been observed) or small variations 
thereof. It cannot be used for situations in which the traffic 
demands are significantly affected, unless some other model is 
used to compute the ‘new’ link travel demands.  

 

The core of the model (i.e. the part that models the traffic propagation 

over the network) consists of a cell transmission model. This means that 

all roads are divided in a number of cells. For each time interval, the 

flux on all cell boundaries is determined on the basis of the conditions 

in both the downstream and the upstream cell. Each time interval, the 

number of vehicles in each cell is updated, using the fluxes on the cell 

boundaries (i.e. the in- and outflow of the cell under consideration). 

From the number of vehicles in each cell and the cell length, the traffic 

density within the cell can be calculated. (Note that within each cell and 

time-interval, the traffic conditions are assumed homogeneous and 

stationary.) From this density, the traffic speed within the cell is 

determined, using the fundamental diagram (see section 2.1). 

 

Although the model (in its basic form described in Transpute, 2003) 

does not generate two-capacity regimes (in order to ‘avoid unexpected 

undesirable behavior of the model’), it does take into account the 

capacity drop to some extent. That is, the maximum outflow of a 

congested cell is assumed to decrease linearly with the density, from 

the capacity (at the critical density) to the queue discharge rate from 

standstill (at the jam density). Here the queue discharge rate from 

standstill is a fixed percentage of the capacity. 

 

In the model automatically a spatial discretization (i.e. cell length) of 

200 m is used. This seems short enough for a computation of the 

spatial dynamics of the queues which is sufficiently accurate for the 

task at hand. 

 

Since for the determination of the cell fluxes (i.e. the flows from one 

cell to another) only the traffic states in the two immediately adjoining 

cells are considered in the computational scheme, it is required that the 

‘information’ in the traffic flow might not travel a larger distance within 



 
 
 

 

 

 
 315 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

one time interval than one cell length (i.e. 200 m). In the upstream 

direction information travels with a speed of maximal about 20 km/h 

(the maximum speed with which a shock wave travels upstream). In the 

downstream direction information travels with a speed of maximal 120 

km/h (the highest speed limit on Dutch motorways, thus neglecting 

over-speeding). Since the latter is higher, this one is decisive for the 

maximum time interval. By dividing the cell length (200 m) by this 

speed (120 km/h), one can compute that the maximum time step is 6 

seconds then. Therefore, Flowsimulator uses a time interval of this 

duration (Transpute, 2003). 

 

In spite of the fact that the traffic conditions on a whole network are 

calculated, and that a rather small time step is used, the calculation 

time of the model is not very large. (In about one minute, the traffic 

conditions on the main road network of all motorways in the 

Netherlands can be calculated for a one-day period.) 

 

In the model a possibility is created to include variations in the 

circumstances governing the traffic conditions (other than the average 

within-day variations in the traffic demand, which of course are already 

included in the model by specifying the average working day traffic 

demand patterns). This possibility is created by the inclusion of a 

‘capacity table’ in the model. This table consists of ‘capacity factors’ for 

every single road section, per quarter of an hour of the day. In the 

simulation process, the nominal link capacities are multiplied by these 

factors, by which these capacities might be temporarily raised or 

lowered. This way, within-day variations can be modeled. By 

generating different tables (reflecting different days), and repeating the 

simulation process for these different tables, day-to-day variations can 

be taken into account as well. Note that the different tables should be 

generated partially in a systematic way, and partially in a random way. 

After all, some of the sources of variation behave in a systematic way, 

while others are more random in nature (see chapter 2). 

 

Note that the model contains only a capacity table. A counterpart for 

the traffic demands is not included. This means that the variations in 

the traffic demands have to be incorporated artific ially by applying 

variations in the capacities ‘in the opposite direction’ (i.e. compensating 

for the neglected variations in the demands). It should be noted 

however that in the model fluctuations in the traffic demands in fact 

cannot be addressed in an ideal manner anyhow, since all model inputs 

(not only capacities, but demands as well) are specified on link level, 

while the variations in demands arise at the route (or origin-destination) 

level. 

 

In (Transpute, 2003), a possible scheme for generating the capacity 

tables (in order to account for the variations in demand and capacity) is 

described, which was applied in a project in which the model was used. 

In this scheme, many of the sources of variability (and their mutual 

interactions) are not included however (like incidents and road works), 

or only in a strongly simplified way. However, the model user can easily 

generate such capacity tables himself (for example using a spreadsheet 
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program with a random number generator), in which all different 

sources of variability and their mutual interdependencies are included in 

a proper way. It is very easy to ‘switch’ the various sources of variability 

‘off’ in the model (in order to find out their individual contributions to 

the performance indicators, or in order to perform a ‘representative’ 

calculation of the traffic conditions). A simple change of the capacity 

tables (i.e. the removal of some or all of the influences factors) is 

sufficient.  

 

Of course, the variations in traffic supply conditions are not limited to 

variations in the capacities. Other supply characteristics, such as the 

free speeds and the jam densities might be affected by the sources of 

variability as well 132 . This however is not taken into account by the 

model, which obviously is a limitation of it. 

 

The model offers a wide range of possibilities to incorporate the effects 

of measures (aimed at alleviating traffic congestion). These possibilities 

include: adaptation of the network structure, adjustment of link or 

node characteristics (like the number of lanes, or spill back ratios), 

adaptation of the fundamental diagrams, and modification of the 

capacity table. Since the capacity table allows one to specify different 

values for different time periods (per quarter of an hour), some 

dynamic measures can be incorporated as well. Probably, some other 

inputs to the model cannot be specified in a time dependent way 

however, so that not all types of dynamic measures can be evaluated. 

Also note that part of the dynamic measures is traffic responsive in 

nature (meaning that these measures react on the actual traffic 

conditions). It seems that the model does not contain readily available 

possibilities to take this into account. Another limitation of the model is 

that effects on the traffic demands cannot be accounted for in an ideal 

way, as was discussed already in an earlier part of this section. 

 

The output of Flowsimulator consists of the rough simulation data, i.e. 

the traffic conditions (speed and traffic volume) in all cells of the 

network, for every nth time step. Using this output, all desired indicators 

(defined in section 3.4) can be computed in a post-processing step. 

 

A1.6 KAPASIM 

KAPASIM is a model developed at the Ruhr University in Bochum 

(Germany). It was developed to enable the assessment of traffic flow 

quality over a whole year (instead of during one single ‘representative’ 

peak hour), in the context of the design of road facilities. It is based on 

a comparison of annual patterns of traffic demand and freeway 

capacity. These patterns are simulated using the Monte Carlo 

technique. As output, the sum of delays and the total duration of 

congested flow conditions over a whole year are provided. Several 

other parameters relating to the reliability of the freeway operation are 

                                                   
132  As far as the jam density is concerned, the most obvious cause of variability is the 

variability in the number of available lanes. 
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estimated as well, like the risk of being significantly delayed by 

congestion, or the number of traffic break downs (Brilon et al, 2007).  

 

In the model, traffic conditions are computed with a simple vertical 

queuing model. At the end of each time interval the number of vehicles 

in the queue is updated with the difference between the traffic demand 

and capacity generated for this time interval. The delays due to traffic 

congestion (i.e. incurred in queues) are computed by multiplying the 

average of the numbers of queued vehicles at the beginning and end of 

the time-interval by the interval duration (Brilon et al., 2007). 

Obviously also in free flowing traffic delays are incurred. After all, on 

average the speed decreases with increasing traffic volume (within the 

free flow domain) – see also the fundamental diagram discussed in 

section 2.1. Brilon et al (2007) note that this can be addressed by using 

a combined traffic flow model based on standardized speed-flow 

curves, which are varied in accordance with the random capacity 

variation. It is not clear however whether this is actually implemented in 

KAPASIM.  

 

In the model an individual freeway section is considered. This means 

that network effects (i.e. blocking back, the temporal  redistribution 

effect, and route choice effects – see section 2.3) are not taken into 

account. The capacity drop (i.e. the difference between the free flow 

capacity and the queue discharge capacity – see section 2.1) is 

accounted for in the model. 

 

In the model a time interval of 5 minutes is used. This interval seems 

short enough for a sufficiently accurate computation of the formation 

and dissolution of queues and the resulting delays (i.e. without the 

(within-day) variations in the traffic demand and supply and the 

resulting traffic conditions being smoothed out too much). It should be 

noted that a time interval of 5 minutes typically would not be short 

enough for the propagation of the traffic over the network to be 

modeled in a sufficiently accurate (and stable) way. Since in this model 

only an individual freeway section is considered, for this model a time 

interval of 5 minutes is sufficiently short however. 

 

Not all sources of fluctuations identified in section 2.2 are taken into 

account in the model. As far as the fluctuations in traffic demand are 

concerned, the following sources are included: 
- time of day 
- day of week (explicitly or implicitly) 
- period of year (explicitly or implicitly) 
- ‘other’ variations in human travel and driving behavior 133 (only to 

a limited extent) 

 

The time of day is taken into account by multiplying the daily traffic 

volumes by typical demand patterns for different weekdays. These 

typical demand patterns describe the shares of hourly demand values in 

the total daily traffic volume. The daily traffic volumes (reflecting the 

                                                   
133 Here ‘other’ is defined with respect to all sources of demand variations identified in section 
2.2.4 (i.e. not with respect to the time of day, day of week, and period of year only).  
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day-of-week and period-of-year fluctuations) are derived from loop 

detector data for an existing freeway, or – if no traffic data are 

available – by using typical demand patterns over a week and a year. 

For the German freeway network such patterns are available. In the 

first case the influence of the day of the week and the period of the 

year are thus taken into account in an implicit way, while in the second 

case they are considered explicitly. It should be noted that it in fact is 

not very desirable to use measured traffic volume data, since these data 

are likely to be affected by the occurrence of traffic congestion (at the 

road section under consideration, or elsewhere in the network). 

Consequently, these data do not correspond to the factual traffic 

demands. Furthermore they are valid only for a specific year, which 

may not be representative for an arbitrary year. 

 

It seems that other sources of variation in traffic volumes (i.e. events, 

public holidays, variations in weather conditions, road works, traffic 

information dissemination, and other variations in human travel 

behavior) are not really taken into account in the model. Of course one 

could argue that if the daily traffic volumes are derived from loop 

detector data, these other sources of variation are implicitly reflected in 

these daily traffic volumes. However, this clearly is not a proper way to 

take these variations into account, since: 
- The variations in demand are partially connected to the 

(separately simulated) variations in supply 134, which is neglected 
this way. 

- The effects of some of these sources of variation (especially the 
effects of weather conditions, events and traffic information 
dissemination) are (often) concentrated on a limited part of the 
day, rather than increasing or decreasing the traffic demand over 
the whole day to the same extent. This is not taken into account 
in the model. 

 

Apart from the systematic within-day demand patterns, the only 

within-day demand variation taken into account is the short-term 

‘white noise’ in the traffic demand (which can be attributed to 

variations in human travel and driving behavior). This ‘white noise’ is 

included in the model by applying a normal-distributed factor with an 

expected value of 1, and a variance of 0.1 (Brilon et al, 2007).  

 

For the fluctuations in traffic supply, the following sources are taken 

into account in the model: 
- incidents 
- variations in weather conditions (rainfall events only) 
- variations in vehicle population (implicitly) 
- variations in driver population (implicitly) 
- variations in human behavior (implicitly) 

 

                                                   
134 Examples of these interconnections are: 

- The effects of weather conditions on the traffic demands coincide with the effects 
of weather conditions on the traffic supply. 

- The effects of road works on the traffic demands coincide with the effects of road 
works on the traffic supply. 

- The (effects of) traffic information dissemination is/are dependent on the traffic 
conditions, which on their turn are dependent on (among other things) the traffic 
supply conditions.  
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The capacity of the road section under consideration is drawn from a 

capacity distribution function. Based on empirical research, a Weibull 

distribution function with shape parameter 13  is used for this. For 
the scale parameter   – which is derived from empirical research as 

well – no general value can be given. This value is dependent on the 

characteristics of the road section under consideration, such as number 

of lanes and gradient. In an implicit way, the effects of variations in 

vehicle population, driver population and human behavior are included 

in this capacity distribution function. 

 

The influence of incidents is taken into account by randomly generating 

incidents, based on typical accident and car breakdown rates, and 

applying a capacity reduction estimated by using the reduction 

percentages from the Highway Capacity Manual (see section 2.2.5). 

This capacity reduction is applied by varying the scale parameter of the 

capacity distribution. As far as the influence of variations in weather 

conditions is concerned, only rainfall events are taken into account. It is 

argued that extreme weather conditions such as heavy snowfall and ice 

are rare in most parts of the world, and consequentially should not be 

addressed in highway dimensioning. The influence of variations in 

luminance is not considered either, since Brilon et al. (2005) found that 

darkness does not shift the capacity distributions. The influence of 

rainfall is taken into account by randomly generating rainfall events, 

based on monthly probabilities of rainfall. Again, the effect on capacity 

is taken into account by adapting the scale parameter of the capacity 

distribution function. It is not clear to which extent the effect on the 

speeds (in particular the free flow speeds) is accounted for.  

 

It is not clear from (Brilon et al, 2007) whether the influence of road 

works on the traffic supply conditions is included in KAPASIM. It would 

not be very difficult to add this to the model however. Road works can 

be generated in a similar way as incidents and rainfall events.  The effect 

on capacity can be accounted for in a way similar as well (i.e. by 

adapting the capacity distribution). The effect of the speed limit 

reductions in work zones would have to be incorporated by using 

adapted speed-flow curves for simulated roadwork situations. 

 

The influence of traffic control actions can be included in the model by 

using adapted capacity distributions (i.e. with different scale and/or 

shape parameters). In (Brilon et al, 2005) an example is given of the 

effect of dynamic speed limit control on the capacity distribution (see 

also section 2.2.5). For part of the traffic control measures it is 

necessary to adapt the speed-flow curve (used for the situations in 

which the traffic is freely flowing) as well. 

 

The model does not take into account all mutual interdependencies 

between the various sources of fluctuations. The influence of weather 

conditions on the rate of occurrence of accidents (resulting in an 

interdependency between the capacity effect of incidents and the 

capacity effect of weather conditions) for example is not taken into 

account. The dependency of incidents on the traffic volume probably is 

taken into account, since the random generation of incidents likely is 
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based on the incident rates per vehicle-kilometer. Also the relation 

between the influence of the time of the day and the day of the week 

is taken into account, by applying separate daily patterns for the 

different days of the week.  

 

In order to be able to assess the individual contributions of the various 

primary sources of traffic congestion, one of the requirements set in 

section 4.4 was that the model should include the possibility to 

separately ‘switch off’ each individual source of variability. In this 

model, all included sources of variability in the traffic supply can be 

‘switched off’ by putting their frequencies/probabilities to zero or 

putting the shape parameter of the capacity distribution (  ) to an 

‘infinitely large’ (or very large) value (resulting in an (almost) zero 

variance). The variations due to fluctuations in vehicle population, 

driver population and driving behavior cannot be separated from one 

another, due to the fact that their effects are combined into one 

capacity distribution. 

 

The systematic sources of fluctuations in traffic demands (i.e. time of 

day, day of week, and period of year) can be ‘switched off’ insofar they 

are included in the model by specifying their (individual) typical 

variation patterns (namely by replacing these patterns by one constant 

average level). Insofar as they are included in the form of measured 

daily traffic demands (obtained from loop detectors), they cannot easily 

be ‘switched off’ on an individual basis. The ‘white noise’ in the traffic 

demand can be ‘switched off’ by simply putting its variance to zero.  

 

For the computation of the ‘representative’ situation, it should be 

possible to ‘switch off’ all sources of variability together, except for the 

systematic within-day variability in traffic demand (see section 4.4). 

This is easily possible by putting the frequencies/probabilities of all 

disturbances to zero and putting the variances of all systematic 

influence factors to zero (and giving them a ‘representative’ value). 

 

The model offers a lot of possibilities for the incorporation of the 

effects of the measures to be considered (aimed at alleviating traffic 

congestion): 

- modification of the (systematic) demand patterns, 

- adjustment of the variance of the ‘white noise’ in the traffic 

demand, 

- adjustment of the frequencies of the disturbing influences, 

- modification of the parameters of the capacity distributions. 

 

Due to fact that the model is dynamic, with a reasonably small time 

step, dynamic measures can be included as well. However, all measures 

with effects with a significant ‘network-component’ (like traffic buffers 

and route information provision) cannot satisfactorily be included, due 

to the fact that the model considers one individual freeway section 

only. This is a major drawback of the model. Obviously, measures with 

significant effects on the sources of variability that are not (explicitly) 

included in the model, cannot satisfactorily be included either.  
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The calculation time of the model is rather limited, due to the fact that 

only one freeway section is considered, using a simple (i.e. vertical) 

queuing model. Besides the fact that network effects are neglected with 

this approach (as was already mentioned earlier), another major 

drawback of this approach however is that the desired performance 

indicators (as specified in section 3.4) cannot be computed with the 

model. After all, these are performance indicators at origin-destination 

or network level, while the model can only provide indicators on the 

level of individual freeway sections. Actually, another difficulty is in the 

fact that the model does not directly provide travel times (or speeds) as 

output. Instead, more aggregated indicators are provided, like the sum 

of all delays. 

 

A1.7 Travel time variability model of Mehran & Nakamura 

In 2009, Mehran and Nakamura presented a methodology to estimate 

travel time reliability (and the impacts of congestion relief schemes 

thereon) based on modeling travel time variations as a function of 

demand and capacity, taking into account weather conditions and 

traffic accidents. In fact, at the same time the model is also meant for 

ex-ante assessing the traffic safety effects of congestion relief schemes 

(expressed in the number of accidents). 

 

In the model, an expressway segment is considered. The patterns of 

demand and capacity over a year are simulated using the Monte Carlo 

technique. For each time interval, it is determined whether or not a 

queue starts to build up, by comparing demand and capacity. From the 

moment that a queue is created, the number of queuing vehicles is 

estimated for each time interval by means of shockwave analysis (i.e. 

considering the physical length of the queue). Next, travel times are 

estimated using speed-flow relationships (not only for congested time 

intervals, but for uncongested intervals as well). For congested 

intervals, for this a distinction is made between the operating speeds 

upstream of the queue, within the queue, and downstream of the 

queue. 

 

It should be noted that in the model the location of the head of the 

queue is assumed fixed over time. In reality, this is not necessarily the 

case however. Furthermore, it is assumed that all queues have their 

head at one and the same location (to be determined by means of a 

calibration procedure), also in situations in which the road segment 

under consideration has no well-defined bottleneck. Clearly, this is not 

realistic either. 

 

The approach based on shockwave analysis makes the model different 

from the other models for single road sections / bottlenecks that have 

been discussed in this appendix. In these models use is made of a 

vertical queuing model (in which the traffic conditions are directly 

derived from the demand and capacity patterns). In fact, the approach 

based on shockwave analysis is a rather roundabout method. After all, 

the delays can be equally well computed using a (much simpler) vertical 
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queuing model, since it is not relevant how these delays are incurred 

(i.e. upstream of the queue or within the queue; with a still reasonably 

high speed within a long queue or with a very low speed within a short 

queue). Since network effects are not considered in the model (i.e. only 

an individual road segment is considered), enabling the consideration of 

blocking back effects cannot be the reason for considering the spatial 

properties of the queue either. The only possible reason for considering 

the physical queue characteristics in this case is that the model 

developers wanted to incorporate the dependency of the accident rate 

on the traffic conditions in the model. One might wonder however if 

this dependency could not have been accounted for in an easier way. 

 

In the model, the capacity drop is accounted for. Under congested 

traffic conditions the capacity is taken to be 10% lower (on average) 

than under free flow traffic conditions. 

 

Just like in KAPASIM, in the model of Mehran and Nakamura a time 

step of 5 minutes is used. As was discussed already for KAPASIM, such 

a time interval seems short enough for a model in which only one 

individual freeway section is considered. It results in a sufficiently 

accurate computation of the formation and dissolution of queues and 

the resulting delays. The calculation time of the model can be expected 

to be rather limited, in spite of the fact that the model is based on 

shockwave analysis (i.e. considering the physical dimension of the 

queue) rather than on a simple vertical queuing principle. This limited 

calculation time again can be attributed to the fact that only one 

freeway section is considered. 

 

In the model, not all sources of variations are taken into account. As far 

as the variations in the traffic supply conditions are concerned, 

variations in the relationship between speed and flow-capacity ratio 

seem not to be taken into account at all. For the capacity, the following 

sources of variability are taken into account by the model: 
- varying weather conditions (rainfall only) 
- accidents 
- variations in vehicle population (implicitly/explicitly) 
- variations in driver population (implicitly) 
- variations in driving behavior (implicitly) 

The influences of luminance, road works, traffic control actions, and 

incidents other than accidents (like vehicle breakdowns or cargo spills) 

are neglected. 

 

Unlike earlier discussed models taking into account the influence of 

weather conditions, the model of Mehran and Nakamura does not 

randomly generate bad weather events. Instead, historical 

meteorological data are used. Accidents are generated randomly. In 

contrast to most other models, the model does take into account the 

dependency of the occurrence of accidents on the traffic conditions 

(see chapter 2). For this relationships are used that link the accident 

rate to the traffic density. The influence of weather conditions on the 

accident rate is not considered, which is a limitation of the model. 
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Traffic accidents are modeled only after performing an initial calculation 

of the traffic conditions for all time intervals (without any traffic 

accidents). After the generation of accidents, the traffic conditions are 

computed anew. It is not clear why accidents are not immediately taken 

into account. This would save a considerable amount of calculation 

effort. Furthermore, secondary accidents are neglected now. 

 

The three sources of capacity variation that were mentioned last in the 

list above are modeled in a combined way, by modeling the capacity as 

a random variable with a Weibull distribution. The effect of variability 

in vehicle population however to a certain extent is taken into account 

explicitly as well, by accounting for the variation in the fraction of 

heavy vehicles (using a capacity-conversion factor, as explained in 

chapter 2). 

 

As far as the traffic demands are concerned, the following sources of 

variability are taken into account: 
- hour of the day 
- day of the week (including holidays (considered as Sundays), 

consecutive holidays and special days) 
- month of the year 
- varying weather conditions (amount of daily rainfall only) 
- (other) variations in human travel behavior 

 

As far as the mutual differences between the different days of the week 

are concerned, not only the differences in the total daily traffic volume 

are taken into account, but the differences in the pattern over the day 

as well. Note that of all models considered, this is the only model taking 

into account the demand effects of varying weather conditions. Also 

note that the interdependency between the capacity effects of weather 

conditions and the demand effects of weather conditions automatically 

is taken into account, since their occurrence is modeled on the basis of 

one and the same weather data set. 

 

The last mentioned source of variability (i.e. ‘other variations in human 

travel behavior’) is taken into account by applying two randomly 

generated (normal distributed) correction factors: one on the level of 

the 5-minute intervals (to account for the short-term variations) and 

one on the level of the day (to account for the fact that if the traffic 

demand in a certain time interval is larger than average, it is more likely 

to be larger than average in the next time interval as well). 

 

The demand effects of events, road works, and traffic information 

dissemination are not explicitly taken into account in the model. 

However, to a certain extent they may implicitly be included in the 

randomly generated correction factors mentioned above, since these 

are derived from empirical data. 

 

A calculation of the ‘representative’ traffic conditions can easily be 

performed with the model, by adapting a number of model parameters 

(like putting the capacity adjustment factors associated with rainy 

weather to one, giving the scale parameter of the Weibull capacity 

distribution a very large value, putting the monthly demand correction 
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factors to their average value, and setting the standard deviations of 

the random demand factors on zero). For the pattern of the traffic 

demand over the day a certain ‘representative’ profile should be 

chosen. 

 

Related to the above, the relative influences of the various individual 

sources of variability can be assessed with the model rather easily as 

well. By adapting one (or a limited number) of the different model 

parameters, individual sources of variability can be ‘switched off’. 

However, the influences of variations in the driver population and 

variations in the driving behavior (and partially also the influence of 

variations in vehicle population) obviously cannot be separated from 

one another, because of the fact that these sources of variability are 

combined in the model. 

 

The model offers many possibilities for the incorporation of the effects 

of the measures to be considered (aimed at alleviating traffic 

congestion), like the possibilities to: 

- adjust the various included sources of variability (in terms of 

effect, probability of occurrence, or pattern), 

- adapt the general demand or capacity level, 

- adjust the speed-volume relationship, and 

- change the magnitude of the capacity drop.  

 

Due to fact that the model calculates the traffic conditions dynamically 

(with a reasonably small time step), dynamic measures can be 

considered as well. However, as was already noted for all other models 

in which only one individual road section is considered, all measures 

with effects with a significant ‘network-component’ cannot 

satisfactorily be included, which is a major drawback of such models. 

Further, measures with significant effects on the sources of variability 

that are not included in the model (like road works, events and 

incidents other than accidents) obviously cannot satisfactorily be 

incorporated either. 

 

As main output, the model provides the buffer time index 135  (as a 

function of the time of the day, separately for different categories of 

days), estimated from the distributions of the simulated travel times. 

However, the ‘intermediate simulation results’ (i.e. the traffic demand, 

the queue discharge flow, the number of queuing vehicles, the speeds, 

and the travel time, all of them for every single 5-minute interval) can 

be used to compute other indicators as well. As with the other models 

in which only one individual road section is considered, an important 

drawback however remains in the fact that the model can only evaluate 

indicators on the level of such an individual road section, while the 

desired indicators are defined at origin-destination or network level. 

 

                                                   
135 See chapter 3 for the definition of the buffer time index. 
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Appendix 2 - Random capacity variation along the FD 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

This appendix describes an alternative approach for implementing the 

random noise of the free flow capacity in the model. According to this 

approach, this random noise is interpreted as a variation along the free 

flow branch of the fundamental diagram, instead of as a variation of 

the fundamental diagram itself. This alternative modeling approach is 

shown in Figure A2.1. 

 

 
 

As a consequence of this approach, for part of the traffic density 

domain the traffic flow is not uniquely defined anymore. This means 

that the model should explicitly track now whether the traffic state in a 

cell is free flow or congested. Furthermore, some rules are required for 

the transitions between the two states. Figures A.2-A.4 show how the 

transition from free flow to congestion is proposed to be modeled. 

 

Figure A2.2 shows the situation at t=1, when the traffic is still free 

flowing. Such a situation will persist as long as the traffic flow in the 

cell is lower than the existent free flow capacity realization.  Now 

imagine that this free flow capacity goes down at a certain moment in 

time t=t2, to a value below the ‘desired’ flow (i.e. the flow that would 

be in ‘equilibrium’ with the traffic density in the cell, according to the 

free flow branch of the fundamental diagram). This situation is depicted 

in Figure A2.3. In this situation, the flow is limited at the free flow 

capacity. In addition to this, a state transition from free flow to 

congestion is triggered. This means that in the next time interval, the 

traffic state will be at the congested branch of the fundamental 

diagram, as shown in Figure A2.4. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A2.1: Alternative modeling 
approach, according to which the 
random noise in the free flow 
capacity corresponds to a variation 
along the free flow branch of the 
fundamental diagram, instead of to a 
variation of the fundamental diagram 
itself. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A2.2: Situation when the 
traffic is still free flowing 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  . . 
Figure A2.3: Situation in which the 
‘desired’ traffic flow exceeds the 
available capacity, resulting in a 
transition to a congested traffic state  
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In the above figures, the rules for the interaction with the upstream and 

downstream cell have been indicated as well. Note that no longer a free 

flow inflow limitation is applied, as in the Godunov scheme. Limiting 

this inflow to the free flow capacity is in this case not really necessary 

anymore, since this free flow capacity has its effect now already via the 

state transition rule. (The only difference is that traffic congestion now 

will commonly be initiated in the first cell downstream of an 

oversaturated bottleneck location, rather than in its upstream cell. As 

long as the cell size is chosen sufficiently small, this does not matter 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A2.4: Situation after the 
transition to a congested traffic state 
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however. In reality traffic actually most often breaks down at some 

distance beyond the bottleneck location as well.) 

 

Figure A2.5 finally shows how the congestion gradually resolves again. 

As soon as the traffic density has decreased to a value below the lowest 

density in the congested branch of the fundamental diagram, the traffic 

state is restored to free flow.   

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A2.5: Recovery to free flow 
conditions 
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Appendix 3 - Some computed travel time distributions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In section 8.5 an example was provided of a travel time distribution 

computed for a particular time of the day. This appendix gives some 

travel time distributions for other times of the day, obtained for the 

same route. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A3.1: Travel time distribution 
on route 6, computed for  
Mon-Thu – 03:00 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A3.2: Travel time distribution 
on route 6, computed for  
Mon-Thu – 07:00 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A3.3: Travel time distribution 
on route 6, computed for  
Mon-Thu – 08:00 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A3.4: Travel time distribution 
on route 6, computed for  
Mon-Thu – 09:00 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A3.5: Travel time distribution 
on route 6, computed for  
Mon-Thu – 13:00 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A3.6: Travel time distribution 
on route 6, computed for  
Mon-Thu – 16:00 
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Figure A3.7: Travel time distribution 
on route 6, computed for  
Mon-Thu – 17:00 
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Figure A3.8: Travel time distribution 
on route 6, computed for  
Mon-Thu – 18:00 
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Figure A3.9: Travel time distribution 
on route 6, computed for  
Mon-Thu – 21:00 
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Appendix 4 - Sensitivity analysis capacity randomness 
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This appendix provides the results of the sensitivity analyses that have 

been performed on the spatial dependencies in the part of the capacity 

variability that is due to the intrinsic randomness in human driving 

behavior. The figures show the model output obtained for a situation in 

which the capacities are varied at the level of links, rather than at the 

level of individual cells of these links. This corresponds to the 

assumption that the local capacities are fully dependent over the whole 

length of the link. 

 

Section A4.1 provides the outputs corresponding to the model results 

presented in section 8.5. Similarly, sections A4.2 en A4.3 provide the 

outputs that correspond to the model results presented in sections 8.6 

and 8.7, respectively. For the interpretation of the presented results  of 

the sensitivity analysis, the reader is referred to the respective sections 

in chapter 8. 
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A4.1 Results of the model run with full variability 

 

 

 

 

 

 
Note: all values of the first four indicators have been made dimensionless by division 

by the free flow travel time. The fifth indicator (i.e. the skew) is already dimensionless 

by itself. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.1: The computed statistics 
of the overall travel time 
distributions (90th-percentile, mean, 
median, width and skew), compared 
with their ‘representative’ 
counterparts 
 
 
 
 
 
 
 



 
 
 

 

 

 
 335 Gaining new insights regarding traffic congestion, by explicitly considering the variability in traffic  

 

 

 

 

 
 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.2: The travel time statistics 
(90th-percentile, mean and median) 
computed for route 6, as a function 
of the time of day and the category 
of days. For the purpose of 
comparison, the representative travel 
time is included as well (for 
weekdays only). 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.3: Distribution of the travel 
time on route 6 at 17:00, computed 
for Monday – Thursday  
 
 
 
 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.4: The width of the travel 
time distribution computed for route 
6, as a function of the time of day 
(separately for Mon-Thu and Fri) 
 
 
 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.5: The skewness of the 
travel time distribution computed for 
route 6, as a function of the time of 
day (separately for the different 
categories of days) 
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No important diffence for first half of the day (including midday). 

During and after evening peak travel time much more stable now. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.6: The travel time 
instability on route 6, for different 
times of the day (for weekdays only) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.7: The computed values of 
the mean and median numbers of 
lost vehicle hours (incurred within 
the boundaries of the network), 
compared with the number of lost 
vehicle hours in the representative 
situation 
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A4.2 Relative importance of different sources of variation  

 

 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.8: The statistics of the 
overall travel time distributions (90th-
percentile, mean, median, width and 
skew), computed for situations in 
which one of the different sources of 
variability is omitted from the model. 
(All values expressed as a ratio to the 
value obtained from the model run 
with full variability.) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.9: The travel time statistics 
for Mon-Thu – 17:00 (90th-percentile, 
mean, median, width and skew), 
computed for situations in which one 
of the different sources of variability 
is omitted from the model. (All 
values expressed as a ratio to the 
value obtained from the model run 
with full variability.)  
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.10: The relative changes in 
the mean and median numbers of 
lost vehicle hours if a given source of 
variability is omitted from the model 
(as compared with the numbers 
obtained from the model run with 
full variability), for weekdays 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.11: The relative changes in 
the mean and median numbers of 
lost vehicle hours if a given source of 
variability is omitted from the model 
(as compared with the numbers 
obtained from the model run with 
full variability), for weekend days 
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A4.3 Effects of a rush-hour lane 

 

 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.12: The statistics of the 
overall travel time distributions (90th-
percentile, mean, median, width and 
skew) in the situation with the rush-
hour lane, compared with those in 
the situation without this lane 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.13: The travel time 
statistics for Mon-Thu – 08:00 (90th-
percentile, mean, median, width and 
skew), in the situation with the rush-
hour lane, compared with those in 
the situation without this lane 
 
 
 
 

Mon-Thu  8:00 h 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.14: The travel time 
statistics for Mon-Thu – 09:00 (90th-
percentile, mean, median, width and 
skew), in the situation with the rush-
hour lane, compared with those in 
the situation without this lane 
 
 
 
 

Mon-Thu  9:00 h 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.15: The effect on the travel 
time instability on route 5, for 08:00 
(weekdays only) 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.16: The effect on the travel 
time instability on route 5, for 09:00 
(weekdays only) 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.17: The effect on the travel 
time instability on route 6, for 09:00 
(weekdays only) 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.18: The effect on the travel 
time instability on route 5, for 17:00 
(weekdays only) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.19: The effect on the travel 
time instability on route 4, for 08:00 
(weekdays only) 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.20: The effect on the travel 
time instability on route 4, for 09:00 
(weekdays only) 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.21: The effect on the travel 
time instability on route 2, for 09:00 
(weekdays only) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.22: The mean and median 
numbers of lost vehicle hours on 
weekdays in the situation with the 
rush-hour lane, compared with those 
in the situation without this lane 
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Figure A4.23: The mean and median 
numbers of lost vehicle hours on 
weekend days in the situation with 
the rush-hour lane, compared with 
those in the situation without this 
lane 
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